Alexander Vosmerikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6017522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Zn Aluminosilicates and Their Physicochemical and Catalytic Properties in the Aromatization of Propane. Russian Journal of Physical Chemistry A, 2022, 96, 535-541.	0.6	0
2	State-of-the-Art and Achievements in the Catalytic Conversion of Natural Gas into Valuable Chemicals. Catalysis in Industry, 2022, 14, 11-30.	0.7	1
3	Catalytic Conversion of Methanol and Straight-Run Gasoline over Granulated Catalysts with Different Concentrations of H-Form ZSM-5 Zeolite. Petroleum Chemistry, 2022, 62, 544-551.	1.4	4
4	Effect of the Nature of Silicon Source on the Physicochemical Properties of Zn-Aluminosilicate and Its Activity in the Course of Propane Aromatization. Chemistry for Sustainable Development, 2021, 29, 123-129.	0.1	0
5	Nonoxidative Methane Conversion on Granulated Mo/ZSM-5 Catalysts. Petroleum Chemistry, 2021, 61, 370-377.	1.4	4
6	A Model of Catalytic Cracking: Product Distribution and Catalyst Deactivation Depending on Saturates, Aromatics and Resins Content in Feed. Catalysts, 2021, 11, 701.	3.5	9
7	Novel Molybdenite-Based Nanopowder Catalysts for Hydrodesulfurization. Petroleum Chemistry, 2021, 61, 794-805.	1.4	3
8	Assessment of the current state of research and achievements in the field of catalytic processing of natural gas into valuable chemical products. Kataliz V Promyshlennosti, 2021, 21, 197-217.	0.3	0
9	Effect of the Initial Form of the Zeolite Support on the State of Mo in the Mo/ZSM-5 Catalyst and its Activity in the Course of Methane Dehydroaromatization. Chemistry for Sustainable Development, 2021, 29, 190-197.	0.1	0
10	Non-Oxidative Conversion of Methane over a Mo/HZSM-5 Catalyst. Petroleum Chemistry, 2021, 61, 1234.	1.4	1
11	Studies of transformations of n-butane to low olefins on catalysts Pd/γ-Al2O3, Rh/γ-Al2O3, Pd/SiO2 and Rh/SiO2. Materials Today: Proceedings, 2020, 31, 479-481.	1.8	0
12	Study of the Stability of the Gallium-Containing Catalyst in the course of Conversion of Gaseous C ₁ -C ₆ Hydrocarbons into Aromatic Compounds. Journal of Physics: Conference Series, 2020, 1611, 012035.	0.4	1
13	Influence of Conditions of Cryogenic Molybdenite Grinding on the Activity of Bulk Sulfide Hydrotreating Catalysts. Petroleum Chemistry, 2020, 60, 365-372.	1.4	0
14	General Features of Catalytic Upgrading of Karmalskoe Heavy Oil in the Presence of Amorphous Aluminosilicates. Petroleum Chemistry, 2020, 60, 384-391.	1.4	6
15	Nonoxidative methane conversion over Mo/HZSM-5 catalysts with a mesoporous structure. AIP Conference Proceedings, 2020, , .	0.4	0
16	Cryogenic approach to the synthesis of molybdenite-based hydrodesulfurization catalysts. AIP Conference Proceedings, 2020, , .	0.4	0
17	Conversion of straight-run gasoline over an acid-treated granular zeolite catalyst. AIP Conference Proceedings, 2020, , .	0.4	0
18	Preparation and investigation of properties of methane dehydroaromatization catalysts based on ZSM-5 zeolites and Mo nanopowders. AIP Conference Proceedings, 2020, , .	0.4	0

#	Article	IF	CITATIONS
19	Preparation of olefinic hydrocarbons from propane over phosphorus-modified ZSM-5 zeolites. AIP Conference Proceedings, 2020, , .	0.4	0
20	Nonoxidative Conversion of Methane to Aromatic Hydrocarbons in the Presence of ZSM-5 Zeolites Modified with Molybdenum and Rhenium. Petroleum Chemistry, 2019, 59, 91-98.	1.4	6
21	Effect of the nature of silicon source on physicochemical properties of high-silica zeolites and the activity of Zn-pentasils prepared on their basis in the course of aromatization of lower alkanes. IOP Conference Series: Materials Science and Engineering, 2019, 597, 012002.	0.6	0
22	Non-oxidative methane conversion over Mo/ZSM-5 catalysts with mesoporous structure. IOP Conference Series: Materials Science and Engineering, 2019, 597, 012019.	0.6	0
23	Structural changes and chemistry of petroleum macromolecular components during thermocatalytic processing. AIP Conference Proceedings, 2019, , .	0.4	0
24	Catalysts for hydrodesulfurization prepared by the mechanical activation of molybdenite under cryogenic conditions. AlP Conference Proceedings, 2019, , .	0.4	0
25	Effect of the method of introduction of rhenium into a zeolite on the dynamics of its deactivation during upgrading of straight-run gasoline. AIP Conference Proceedings, 2019, , .	0.4	0
26	Production of Aromatic Hydrocarbons from C3, C4-alkanes Over Zeolite Catalysts. Journal of Siberian Federal University: Chemistry, 2019, 12, 144-154.	0.7	1
27	Study of Methane Aromatization over Mo-Containing Zeolite Catalysts with a Hierarchical Pore System. Journal of Siberian Federal University: Chemistry, 2019, 12, 118-125.	0.7	2
28	Influence of Steaming of Gallium-Containing Zeolite on Its Acid and Catalytic Properties in the Propane Aromatization Process. Petroleum Chemistry, 2018, 58, 237-244.	1.4	1
29	Thermal conversion of mechanically activated mixtures of aspen wood-zeolite catalysts in a supercritical ethanol. Journal of Analytical and Applied Pyrolysis, 2018, 132, 237-244.	5.5	7
30	Protective bitumen-resin coatings based on aromatic petroleum resin. AIP Conference Proceedings, 2018, , .	0.4	1
31	Thermocatalytic conversion of petroleum paraffin in the presence of tungsten carbide powders. AIP Conference Proceedings, 2018, , .	0.4	1
32	Dry mixing method as an effective method of modification of zeolite catalysts. AIP Conference Proceedings, 2018, , .	0.4	0
33	Investigation of the non-oxidative methane conversion over ZSM-5 metal-containing zeolites. AIP Conference Proceedings, 2018, , .	0.4	0
34	Aromatization of propane and butane over galloaluminosilicate catalyst modified by platinum. AIP Conference Proceedings, 2018, , .	0.4	2
35	Thermocatalytic transformation of heavy residual feedstock in the presence of polyoxomolybdate compounds. AIP Conference Proceedings, 2018, , .	0.4	3
36	Cracking of Heavy Hydrocarbon Feedstocks in the Presence of Cobalt. Catalysis in Industry, 2018, 10, 217-221.	0.7	1

#	Article	IF	CITATIONS
37	Nature of the Active Centers of In-, Zr-, and Zn-Aluminosilicates of the ZSM-5 Zeolite Structural Type. Russian Journal of Physical Chemistry A, 2018, 92, 689-695.	0.6	4
38	Deactivation features of gallium-containing zeolites in the propane aromatization process. Petroleum Chemistry, 2017, 57, 85-92.	1.4	4
39	Physicochemical and catalytic properties of Ga and In pentasils in the reaction of propane aromatization. Russian Journal of Physical Chemistry A, 2017, 91, 856-861.	0.6	1
40	Preparation method effect on the physicochemical and catalytic properties of a methane dehydroaromatization catalyst. Kinetics and Catalysis, 2017, 58, 51-57.	1.0	8
41	Low-temperature CO oxidation on Ag/ZSM-5 catalysts: Influence of Si/Al ratio and redox pretreatments on formation of silver active sites. Fuel, 2017, 188, 121-131.	6.4	53
42	Features of non-oxidative conversion of methane into aromatic hydrocarbons over Mo-containing zeolite catalysts. IOP Conference Series: Earth and Environmental Science, 2016, 43, 012064.	0.3	1
43	Activity and Deactivation of ZSM–5 Catalysts in the Dimethyl Ether Synthesis from CO and H ₂ and Methanol Dehydration. Key Engineering Materials, 2016, 683, 406-414.	0.4	1
44	Effect of the conditions of thermal pretreatment on the properties of Mo/ZSM-5 catalyst of the nonoxidative conversion of methane. Russian Journal of Physical Chemistry A, 2016, 90, 2364-2369.	0.6	2
45	Synthesis and characterization of mechanically activated bulky molybdenum sulphide catalysts. Comptes Rendus Chimie, 2016, 19, 1315-1325.	0.5	6
46	Synthesis of ZSM-5 galloalumosilicate and investigation of their physicochemical and catalytic properties in the course of conversion of propane into aromatic hydrocarbons. IOP Conference Series: Earth and Environmental Science, 2015, 27, 012045.	0.3	1
47	Lignin conversion in supercritical ethanol in the presence of solid acid catalysts. Kinetics and Catalysis, 2015, 56, 434-441.	1.0	19
48	Investigation of Massive Catalyst based on Molybdenum Disulphide by Simultaneous Thermal Analysis and Mass Spectrometry Methods. IOP Conference Series: Materials Science and Engineering, 2015, 81, 012068.	0.6	0
49	Deactivation of a Zn-Containing zeolite in ethane aromatization. Kinetics and Catalysis, 2014, 55, 729-736.	1.0	Ο
50	Catalytic aromatization of ethane on zinc-modified zeolites of various framework types. Petroleum Chemistry, 2014, 54, 420-425.	1.4	27
51	Effect of the nature of a structure-forming additive on the physicochemical properties of zeolites and the activity of Zn-containing catalysts based on them in ethane aromatization. Russian Journal of Physical Chemistry A, 2014, 88, 397-401.	0.6	Ο
52	Aromatization of Propane over Element-Alumosilicate Catalysts with ZSM-5 Structure. IOP Conference Series: Earth and Environmental Science, 2014, 21, 012032.	0.3	0
53	Physicochemical properties and activity of Mo-containing zeolite catalysts of nonoxidative conversion of methane. Russian Journal of Physical Chemistry A, 2013, 87, 919-922.	0.6	5
54	Complex Catalysts for Direct Synthesis of Dimethyl Ether from Synthesis Gas. Part I: Study of the Catalytic Properties. Advanced Materials Research, 2013, 872, 15-22.	0.3	1

Alexander Vosmerikov

#	Article	IF	CITATIONS
55	Physicochemical and catalytic properties of iron- and indium-containing zeolites. Petroleum Chemistry, 2013, 53, 121-126.	1.4	7
56	Catalytic activity of the dehydration catalysts for dimethyl ether synthesis. , 2012, , .		0
57	Nanopowder hydrogenation catalysts of diesel fraction components. , 2012, , .		0
58	Ethane aromatization on galloaluminosilicate modified with platinum and palladium. Kinetics and Catalysis, 2012, 53, 731-736.	1.0	14
59	Physicochemical properties and activity of nanopowder catalysts in the hydrodesulfurization of diesel fraction. Russian Journal of Physical Chemistry A, 2012, 86, 375-379.	0.6	5
60	Methane conversion into aromatic hydrocarbons over Ag-Mo/ZSM-5 catalysts. Kinetics and Catalysis, 2011, 52, 427-433.	1.0	5
61	Improving catalysts for the refining of straight-run gasoline fractions of petroleum. Catalysis in Industry, 2011, 3, 157-160.	0.7	2
62	Synthesis and properties of high-modulus zeolites. Theoretical Foundations of Chemical Engineering, 2011, 45, 500-504.	0.7	1
63	Conversion of the straight-run gasoline fraction of high-paraffin oil on a zeolite catalyst. Petroleum Chemistry, 2011, 51, 143-149.	1.4	Ο
64	Natural gas conversion over La-Mo-substituted high-silica zeolites. Petroleum Chemistry, 2010, 50, 200-204.	1.4	0
65	Dimerization and oligomerization of styrene in the presence of pentasils. Russian Chemical Bulletin, 2009, 58, 59-63.	1.5	7
66	Nonoxidative conversion of methane into aromatic hydrocarbons on Ni-Mo/ZSM-5 catalysts. Kinetics and Catalysis, 2009, 50, 725-733.	1.0	24
67	Natural gas conversion on ZSM-5 zeolites modified with zirconium and molybdenum nanopowders. Petroleum Chemistry, 2009, 49, 47-52.	1.4	1
68	Inorganic reagents for testing the properties of copper nanopowders. Journal of Analytical Chemistry, 2009, 64, 566-570.	0.9	6
69	Ultra-high-Silica ZSM-5 Zeolites: Synthesis and Properties. Russian Journal of Inorganic Chemistry, 2008, 53, 169-173.	1.3	6
70	Conversion of natural gas into liquid products on bimetallic zeolite catalysts. Theoretical Foundations of Chemical Engineering, 2008, 42, 622-626.	0.7	1
71	Catalytic activity in hydrocarbon conversion of pentasil containing platinum, nickel, iron, or zinc nanoparticles. Petroleum Chemistry, 2008, 48, 201-205.	1.4	15
72	Catalytic activity in the hydrocarbon conversion of systems containing platinum, nickel, iron, and zinc nanoparticles (communication 2). Petroleum Chemistry, 2008, 48, 355-359.	1.4	21

#	Article	IF	CITATIONS
73	Conversion of α-methylstyrene over pentasil zeolites with various silica ratios. Petroleum Chemistry, 2008, 48, 366-370.	1.4	5
74	Active sites of the methane dehydroaromatization catalyst W-ZSM-5: An HRTEM study. Kinetics and Catalysis, 2008, 49, 110-114.	1.0	15
75	Nonoxidative methane conversion into aromatic hydrocarbons on tungsten-containing pentasils. Kinetics and Catalysis, 2007, 48, 409-413.	1.0	6
76	The synthesis and physicochemical and catalytic properties of SHS zeolites. Russian Journal of Physical Chemistry A, 2007, 81, 1618-1622.	0.6	4
77	One-stage catalytic conversion of natural gas into liquid products. Theoretical Foundations of Chemical Engineering, 2007, 41, 686-690.	0.7	1
78	Properties and deactivation of the active sites of an MoZSM-5 catalyst for methane dehydroaromatization: Electron microscopic and EPR studies. Kinetics and Catalysis, 2006, 47, 389-394.	1.0	34
79	Study of individual hydrocarbon's composition of gasoline fraction of Tamsagbulag oil, Mongolia. Journal of Petroleum Science and Engineering, 2005, 46, 233-242.	4.2	3
80	The State of the Active Sites and Deactivation of Mo-ZSM-5 Catalysts of Methane Dehydroaromatization. Doklady Physical Chemistry, 2005, 404, 201-204.	0.9	12
81	Deactivation of Molybdenum-Containing Zeolites in the Course of Nonoxidative Methane Conversion. Kinetics and Catalysis, 2005, 46, 724-728.	1.0	12
82	Conversion of Lower Alkanes in the Presence of Metal Nanoparticles Supported on a Zeolite Matrix. Kinetics and Catalysis, 2004, 45, 215-218.	1.0	6
83	Reactivity of nanocrystalline copper oxide and its modification under magnetic field. Solid State Ionics, 2004, 172, 317-323.	2.7	21
84	Title is missing!. Kinetics and Catalysis, 2002, 43, 275-279.	1.0	8