
Andries F Hof

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6017238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using Decomposition Analysis to Determine the Main Contributing Factors to Carbon Neutrality across Sectors. Energies, 2022, 15, 132.	1.6	8
2	Investment needs to achieve SDGs: An overview. , 2022, 1, e0000020.		8
3	On the optimality of 2°C targets and a decomposition of uncertainty. Nature Communications, 2021, 12, 2575.	5.8	14
4	Persistent inequality in economically optimal climate policies. Nature Communications, 2021, 12, 3421.	5.8	44
5	The role of regulatory, market and governance risk for electricity access investment in sub-Saharan Africa. Energy for Sustainable Development, 2021, 62, 136-150.	2.0	36
6	Costs of avoiding net negative emissions under a carbon budget. Environmental Research Letters, 2021, 16, 064071.	2.2	3
7	Adaptive risk management strategies for governments under future climate and socioeconomic change: An application to riverine flood risk at the global level. Environmental Science and Policy, 2021, 125, 10-20.	2.4	5
8	A race to zero - Assessing the position of heavy industry in a global net-zero CO2 emissions context. Energy and Climate Change, 2021, 2, 100051.	2.2	24
9	Decomposition analysis of per capita emissions: a tool for assessing consumption changes and technology changes within scenarios. Environmental Research Communications, 2021, 3, 015004.	0.9	11
10	The Impact of Socio-Economic Inertia and Restrictions on Net-Negative Emissions on Cost-Effective Carbon Price Pathways. Frontiers in Climate, 2021, 3, .	1.3	1
11	Agricultural nature conservation in the Netherlands: Three lenses on transition pathways. Technological Forecasting and Social Change, 2020, 151, 119235.	6.2	8
12	Actors, decision-making, and institutions in quantitative system modelling. Technological Forecasting and Social Change, 2020, 151, 119480.	6.2	26
13	Implications of various effort-sharing approaches for national carbon budgets and emission pathways. Climatic Change, 2020, 162, 1805-1822.	1.7	131
14	Understanding transition pathways by bridging modelling, transition and practice-based studies: Editorial introduction to the special issue. Technological Forecasting and Social Change, 2020, 151, 119665.	6.2	25
15	Aligning integrated assessment modelling with socio-technical transition insights: An application to low-carbon energy scenario analysis in Europe. Technological Forecasting and Social Change, 2020, 151, 119177.	6.2	45
16	Afforestation for climate change mitigation: Potentials, risks and tradeâ€offs. Global Change Biology, 2020, 26, 1576-1591.	4.2	162
17	From global to national scenarios: Bridging different models to explore power generation decarbonisation based on insights from socio-technical transition case studies. Technological Forecasting and Social Change, 2020, 151, 119882.	6.2	12
18	Allocating planetary boundaries to large economies: Distributional consequences of alternative perspectives on distributive fairness. Global Environmental Change, 2020, 60, 102017.	3.6	64

#	Article	IF	CITATIONS
19	Scenario analysis for promoting clean cooking in Sub-Saharan Africa: Costs and benefits. Energy, 2020, 192, 116641.	4.5	38
20	Actors and governance in the transition toward universal electricity access in Sub-Saharan Africa. Energy Policy, 2020, 143, 111572.	4.2	23
21	The costs of achieving climate targets and the sources of uncertainty. Nature Climate Change, 2020, 10, 329-334.	8.1	48
22	Economy-wide effects of coastal flooding due to sea level rise: a multi-model simultaneous treatment of mitigation, adaptation, and residual impacts. Environmental Research Communications, 2020, 2, 015002.	0.9	28
23	Integrating energy access, efficiency and renewable energy policies in sub-Saharan Africa: a model-based analysis. Environmental Research Letters, 2020, 15, 125010.	2.2	10
24	Data for long-term marginal abatement cost curves of non-CO2 greenhouse gases. Data in Brief, 2019, 25, 104334.	0.5	6
25	Long-term marginal abatement cost curves of non-CO2 greenhouse gases. Environmental Science and Policy, 2019, 99, 136-149.	2.4	40
26	Improved modelling of lifestyle changes in Integrated Assessment Models: Cross-disciplinary insights from methodologies and theories. Energy Strategy Reviews, 2019, 26, 100420.	3.3	41
27	Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nature Climate Change, 2018, 8, 391-397.	8.1	455
28	Trade-offs and synergies between universal electricity access and climate change mitigation in Sub-Saharan Africa. Energy Policy, 2018, 114, 355-366.	4.2	56
29	Assessing the ambition of post-2020 climate targets: a comprehensive framework. Climate Policy, 2018, 18, 425-441.	2.6	51
30	Integrated assessment of international climate mitigation commitments outside the UNFCCC. Global Environmental Change, 2018, 48, 67-75.	3.6	36
31	Transport electrification: the effect of recent battery cost reduction on future emission scenarios. Climatic Change, 2018, 151, 95-108.	1.7	27
32	Abandonment of natural gas production and investment in carbon storage. Energy Policy, 2017, 108, 322-329.	4.2	9
33	Global and regional abatement costs of Nationally Determined Contributions (NDCs) and of enhanced action to levels well below 2 °C and 1.5 °C. Environmental Science and Policy, 2017, 71, 30-40.	2.4	96
34	Low-carbon strategies towards 2050: Comparing ex-ante policy evaluation studies and national planning processes in Europe. Environmental Science and Policy, 2017, 78, 89-96.	2.4	15
35	The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach. Energy, 2017, 139, 184-195.	4.5	74
36	Early action on Paris Agreement allows for more time to change energy systems. Climatic Change, 2017, 144, 165-179.	1.7	27

#	Article	IF	CITATIONS
37	Open discussion of negative emissions is urgently needed. Nature Energy, 2017, 2, 902-904.	19.8	94
38	Alleviating inequality in climate policy costs: an integrated perspective on mitigation, damage and adaptation. Environmental Research Letters, 2016, 11, 074015.	2.2	17
39	The EU 40Â% greenhouse gas emission reduction target by 2030 in perspective. International Environmental Agreements: Politics, Law and Economics, 2016, 16, 375-392.	1.5	13
40	Contribution of the G20 economies to the global impact of the Paris agreement climate proposals. Climatic Change, 2016, 137, 655-665.	1.7	63
41	Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?. Energy Policy, 2016, 89, 224-236.	4.2	194
42	Costs and benefits of differences in the timing of greenhouse gas emission reductions. Mitigation and Adaptation Strategies for Global Change, 2016, 21, 1165-1179.	1.0	10
43	European policy responses to climate change: progress on mainstreaming emissions reduction and adaptation. Regional Environmental Change, 2015, 15, 949-959.	1.4	17
44	How well do integrated assessment models represent non-CO2 radiative forcing?. Climatic Change, 2015, 133, 565-582.	1.7	17
45	Deep CO ₂ emission reductions in a global bottom-up model approach. Climate Policy, 2015, 15, 253-271.	2.6	15
46	Welfare impacts of climate change. Nature Climate Change, 2015, 5, 99-100.	8.1	7
47	Regional differences in mitigation strategies: an example for passenger transport. Regional Environmental Change, 2015, 15, 987-995.	1.4	6
48	Disentangling the ranges: climate policy scenarios for China and India. Regional Environmental Change, 2015, 15, 1025-1033.	1.4	4
49	Impact of the choice of emission metric on greenhouse gas abatement and costs. Environmental Research Letters, 2015, 10, 024001.	2.2	28
50	Evaluating sustainability transitions pathways: Bridging analytical approaches to address governance challenges. Global Environmental Change, 2015, 35, 239-253.	3.6	373
51	Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds. GCB Bioenergy, 2015, 7, 741-751.	2.5	12
52	Are major economies on track to achieve their pledges for 2020? An assessment of domestic climate and energy policies. Energy Policy, 2014, 67, 781-796.	4.2	33
53	The impact of technology availability on the timing and costs of emission reductions for achieving long-term climate targets. Climatic Change, 2014, 123, 559-569.	1.7	26
54	Reduction targets and abatement costs of developing countries resulting from global and developed countries' reduction targets by 2050. Mitigation and Adaptation Strategies for Global Change, 2013, 18, 491-512.	1.0	22

#	Article	IF	CITATIONS
55	The effect of updated pledges and business-as-usual projections, and new agreed rules on expected global greenhouse gas emissions in 2020. Environmental Science and Policy, 2013, 33, 308-319.	2.4	16
56	Analysing the greenhouse gas emission reductions of the mitigation action plans by non-Annex I countries by 2020. Energy Policy, 2013, 56, 633-643.	4.2	20
57	Deep greenhouse gas emission reductions in Europe: Exploring different options. Energy Policy, 2013, 55, 152-164.	4.2	24
58	The impact of surplus units from the first Kyoto period on achieving the reduction pledges of the Cancún Agreements. Climatic Change, 2012, 114, 401-408.	1.7	3
59	The role of the land use, land use change and forestry sector in achieving Annex I reduction pledges. Climatic Change, 2012, 115, 873-881.	1.7	30
60	The benefits of climate change mitigation in integrated assessment models: the role of the carbon cycle and climate component. Climatic Change, 2012, 113, 897-917.	1.7	29
61	Copenhagen Accord Pledges imply higher costs for staying below 2°C warming. Climatic Change, 2012, 113, 551-561.	1.7	52
62	Emission allowances and mitigation costs of China and India resulting from different effort-sharing approaches. Energy Policy, 2012, 46, 116-134.	4.2	38
63	The use of scenarios as the basis for combined assessment of climate change mitigation and adaptation. Clobal Environmental Change, 2011, 21, 575-591.	3.6	91
64	The emissions gap between the Copenhagen pledges and the 2°C climate goal: Options for closing and risks that could widen the gap. Global Environmental Change, 2011, 21, 733-743.	3.6	57
65	Exploring the bargaining space within international climate negotiations based on political, economic and environmental considerations. Energy Policy, 2011, 39, 7361-7371.	4.2	2
66	How well do integrated assessment models simulate climate change?. Climatic Change, 2011, 104, 255-285.	1.7	127
67	RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Climatic Change, 2011, 109, 95-116.	1.7	759
68	The Copenhagen Accord: abatement costs and carbon prices resulting from the submissions. Environmental Science and Policy, 2011, 14, 28-39.	2.4	100
69	Predictability, equitability and adequacy of post-2012 international climate financing proposals. Environmental Science and Policy, 2011, 14, 615-627.	2.4	26
70	Adaptation in integrated assessment modeling: where do we stand?. Climatic Change, 2010, 99, 383-402.	1.7	84
71	Variation in the climatic response to SRES emissions scenarios in integrated assessment models. Climatic Change, 2010, 102, 671-685.	1.7	18
72	Including adaptation costs and climate change damages in evaluating post-2012 burden-sharing regimes. Mitigation and Adaptation Strategies for Global Change, 2010, 15, 19-40.	1.0	23

#	Article	IF	CITATIONS
73	A quantitative minimax regret approach to climate change: Does discounting still matter?. Ecological Economics, 2010, 70, 43-51.	2.9	18
74	The effect of different historical emissions datasets on emission targets of the sectoral mitigation approach Triptych. Climate Policy, 2010, 10, 684-704.	2.6	17
75	Environmental effectiveness and economic consequences of fragmented versus universal regimes: what can we learn from model studies?. International Environmental Agreements: Politics, Law and Economics, 2009, 9, 39-62.	1.5	41
76	The effect of different mitigation strategies on international financing of adaptation. Environmental Science and Policy, 2009, 12, 832-843.	2.4	26
77	Analysing the costs and benefits of climate policy: Value judgements and scientific uncertainties. Clobal Environmental Change, 2008, 18, 412-424.	3.6	49
78	An advantage for detecting dynamic targets in natural scenes. Journal of Vision, 2006, 6, 8.	0.1	24
79	Environmental effectiveness and economic consequences of fragmented versus universal regimes. , 0, , 35-59.		1
80	Costs, benefits and interlinkages between adaptation and mitigation. , 0, , 235-254.		1
81	A staged sectoral approach for climate mitigation. , 0, , 183-207.		0
82	Actors, Decision-Making, and Institutions in Quantitative System Modelling. SSRN Electronic Journal, 0, , .	0.4	0