
## Sang Kyu Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6017137/publications.pdf Version: 2024-02-01



SANC KVILLEE

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | High-efficiency single and tandem fullerene solar cells with asymmetric monofluorinated diketopyrrolopyrrole-based polymer. Journal of Energy Chemistry, 2022, 64, 236-245.                                                                         | 12.9 | 15        |
| 2  | Cyclohexyl-substituted non-fullerene small-molecule acceptors for organic solar cells. New Journal of Chemistry, 2021, 45, 10373-10382.                                                                                                             | 2.8  | 2         |
| 3  | Alkyl-Side-Chain Engineering of Nonfused Nonfullerene Acceptors with Simultaneously Improved<br>Material Solubility and Device Performance for Organic Solar Cells. ACS Omega, 2021, 6, 4562-4573.                                                  | 3.5  | 11        |
| 4  | Alkoxy substituted wide bandgap conjugated polymer for non-fullerene polymer solar cells.<br>Molecular Crystals and Liquid Crystals, 2021, 729, 6-13.                                                                                               | 0.9  | 1         |
| 5  | Efficiency enhancement of a fluorinated wide-bandgap polymer for ternary nonfullerene organic solar cells. Polymer, 2020, 188, 122131.                                                                                                              | 3.8  | 10        |
| 6  | Structure engineering of small molecules for organic solar cells. Molecular Crystals and Liquid<br>Crystals, 2020, 705, 35-40.                                                                                                                      | 0.9  | 3         |
| 7  | Effects of Electron-Donating and Electron-Accepting Substitution on Photovoltaic Performance in<br>Benzothiadiazole-Based A–D–Aâ€2–D–A-Type Small-Molecule Acceptor Solar Cells. ACS Applied Energy<br>Materials, 2020, 3, 12327-12337.             | 5.1  | 22        |
| 8  | Non-halogenated solvent-processed ternary-blend solar cells <i>via</i> alkyl-side-chain engineering<br>of a non-fullerene acceptor and their application in large-area devices. Journal of Materials Chemistry<br>A, 2020, 8, 10318-10330.          | 10.3 | 39        |
| 9  | Alkyl side-chain dependent self-organization of small molecule and its application in high-performance organic and perovskite solar cells. Nano Energy, 2020, 72, 104708.                                                                           | 16.0 | 20        |
| 10 | Strategic Halogen Substitution to Enable Highâ€Performance Smallâ€Moleculeâ€Based Tandem Solar Cell<br>with over 15% Efficiency. Advanced Energy Materials, 2020, 10, 1903846.                                                                      | 19.5 | 14        |
| 11 | High-performance CH3NH3PbI3 inverted planar perovskite solar cells via ammonium halide additives.<br>Journal of Industrial and Engineering Chemistry, 2019, 80, 265-272.                                                                            | 5.8  | 19        |
| 12 | Stable P3HT: amorphous non-fullerene solar cells with a high open-circuit voltage of 1 V and efficiency of 4%. RSC Advances, 2019, 9, 20733-20741.                                                                                                  | 3.6  | 9         |
| 13 | Simple and Versatile Non-Fullerene Acceptor Based on Benzothiadiazole and Rhodanine for Organic<br>Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 30098-30107.                                                                          | 8.0  | 24        |
| 14 | Enhanced efficiency and stability of PTB7-Th-based multi-non-fullerene solar cells enabled by the<br>working mechanism of the coexisting alloy-like structure and energy transfer model. Journal of<br>Materials Chemistry A, 2019, 7, 22044-22053. | 10.3 | 26        |
| 15 | Amine-Based Interfacial Engineering in Solution-Processed Organic and Perovskite Solar Cells. ACS<br>Applied Materials & Interfaces, 2019, 11, 16785-16794.                                                                                         | 8.0  | 12        |
| 16 | Room Temperature Processed Highly Efficient Largeâ€Area Polymer Solar Cells Achieved with Molecular<br>Engineering of Copolymers. Advanced Energy Materials, 2019, 9, 1900168.                                                                      | 19.5 | 50        |
| 17 | Simple Bithiophene–Rhodanineâ€Based Small Molecule Acceptor for Use in Additiveâ€Free Nonfullerene<br>OPVs with Low Energy Loss of 0.51 eV. Advanced Energy Materials, 2019, 9, 1804021.                                                            | 19.5 | 58        |
| 18 | Performance data of CH3NH3PbI3 inverted planar perovskite solar cells via ammonium halide additives.<br>Data in Brief, 2019, 27, 104817.                                                                                                            | 1.0  | 6         |

SANG KYU LEE

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | High-efficiency non-halogenated solvent processable polymer/PCBM solar cells <i>via</i><br>fluorination-enabled optimized nanoscale morphology. Journal of Materials Chemistry A, 2019, 7,<br>24992-25002.                               | 10.3 | 21        |
| 20 | The effect of periodontal and prosthodontic therapy on glycemic control in patients with diabetes.<br>Journal of Advanced Prosthodontics, 2019, 11, 247.                                                                                 | 2.6  | 3         |
| 21 | High-Efficiency Nonfullerene Polymer Solar Cells with Band gap and Absorption Tunable<br>Donor/Acceptor Random Copolymers. ACS Applied Materials & Interfaces, 2019, 11, 2189-2196.                                                      | 8.0  | 11        |
| 22 | Enhanced photostability in polymer solar cells achieved with modified electron transport layer. Thin<br>Solid Films, 2019, 669, 42-48.                                                                                                   | 1.8  | 14        |
| 23 | Effective Molecular Engineering Approach for Employing a Halogen-Free Solvent for the Fabrication<br>of Solution-Processed Small-Molecule Solar Cells. ACS Applied Materials & Interfaces, 2018, 10,<br>39107-39115.                     | 8.0  | 13        |
| 24 | Microwave assisted synthesis of bithiophene based donor-acceptor-donor oligomers and their optoelectronic performances. Journal of Molecular Structure, 2017, 1139, 125-129.                                                             | 3.6  | 4         |
| 25 | Thiophene-benzothiadiazole based D–A <sub>1</sub> –D–A <sub>2</sub> type alternating copolymers<br>for polymer solar cells. Polymer Chemistry, 2017, 8, 3622-3631.                                                                       | 3.9  | 30        |
| 26 | Effects on Photovoltaic Performance of Dialkyloxy-benzothiadiazole Copolymers by Varying the Thienoacene Donor. ACS Applied Materials & amp; Interfaces, 2017, 9, 12617-12628.                                                           | 8.0  | 35        |
| 27 | High-Performance CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> -Inverted Planar Perovskite Solar<br>Cells with Fill Factor Over 83% via Excess Organic/Inorganic Halide. ACS Applied Materials &<br>Interfaces, 2017, 9, 35871-35879. | 8.0  | 40        |
| 28 | A thermally and mechanically stable solar cell made of a small-molecule donor and a polymer acceptor. Journal of Materials Chemistry A, 2017, 5, 15923-15931.                                                                            | 10.3 | 20        |
| 29 | Effects of morphology evolution on solution-processed small molecule photovoltaics via a solvent additive. Journal of Materials Chemistry C, 2017, 5, 7837-7844.                                                                         | 5.5  | 16        |
| 30 | Rational design of π-bridges for ambipolar DPP-RH-based small molecules in organic photovoltaic cells. Journal of Industrial and Engineering Chemistry, 2017, 45, 338-348.                                                               | 5.8  | 19        |
| 31 | Highly efficient and thermally stable fullerene-free organic solar cells based on a small molecule<br>donor and acceptor. Journal of Materials Chemistry A, 2016, 4, 16335-16340.                                                        | 10.3 | 88        |
| 32 | Editorial: Special issue on the KJF International Conference on Organic Materials for Electronics and Photonics 2015. Polymer Bulletin, 2016, 73, 2391-2391.                                                                             | 3.3  | 0         |
| 33 | Achieving a solar power conversion efficiency exceeding 9% by modifying the structure of a simple, inexpensive and highly scalable polymer. Journal of Materials Chemistry A, 2016, 4, 18585-18597.                                      | 10.3 | 32        |
| 34 | Highâ€Performance Small Molecule via Tailoring Intermolecular Interactions and its Application in<br>Largeâ€Area Organic Photovoltaic Modules. Advanced Energy Materials, 2016, 6, 1600228.                                              | 19.5 | 69        |
| 35 | Low band gap diketopyrrolopyrrole-based small molecule bulk heterojunction solar cells: influence of terminal side chain on morphology and photovoltaic performance. RSC Advances, 2016, 6, 28658-28665.                                 | 3.6  | 10        |
| 36 | Concentration-Dependent Pyrene-Driven Self-Assembly in Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene<br>(BDT)–Thienothiophene (TT)–Pyrene Copolymers. Macromolecules, 2015, 48, 3509-3515.                                            | 4.8  | 23        |

SANG KYU LEE

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Asymmetric Electron-Donating 4-Alkyl-8-alkoxybenzo[1,2- <i>b</i> :4,5- <i>b</i> â€2]dithiophene Unit for Use<br>in High-Efficiency Bulk Heterojunction Polymer Solar Cells. Macromolecules, 2015, 48, 3918-3927.             | 4.8 | 39        |
| 38 | Synthesis and characterization of benzo[1,2-b:4,5-b']dithiophene-based copolymers for polymer solar cells. Journal of the Korean Physical Society, 2015, 67, 1018-1022.                                                      | 0.7 | 0         |
| 39 | Synthesis and characterization of thieno[3,4-c]pyrrole-4,6-dione-based copolymers for polymer solar cells. Journal of the Korean Physical Society, 2015, 67, 1023-1027.                                                      | 0.7 | 1         |
| 40 | Band gap tunable benzodithiophene-based donor-rich semi-random D–A copolymers with active layer<br>thickness tolerance for organic solar cells. Solar Energy Materials and Solar Cells, 2015, 134, 148-156.                  | 6.2 | 9         |
| 41 | Effect of backbone structures on photovoltaic properties in naphthodithiopheneâ€based copolymers.<br>Journal of Polymer Science Part A, 2014, 52, 305-312.                                                                   | 2.3 | 5         |
| 42 | Naphtho[1,2-b:5,6-b′]dithiophene-based copolymers for applications to polymer solar cells. Polymer<br>Chemistry, 2013, 4, 2132.                                                                                              | 3.9 | 24        |
| 43 | Photovoltaic performance enhancement using fluoreneâ€based copolymers containing pyrene units.<br>Journal of Polymer Science Part A, 2013, 51, 1512-1519.                                                                    | 2.3 | 11        |
| 44 | Synthesis and characterization of regioregular poly(3â€dodecyltellurophene). Journal of Polymer<br>Science Part A, 2013, 51, 2753-2758.                                                                                      | 2.3 | 21        |
| 45 | Synthesis and Characterization of New Selenophene-Based Donor–Acceptor Low-Bandgap Polymers<br>for Organic Photovoltaic Cells. Macromolecules, 2012, 45, 1303-1312.                                                          | 4.8 | 90        |
| 46 | Synthesis and Characterization of a Novel Naphthodithiophene-Based Copolymer for Use in Polymer<br>Solar Cells. Macromolecules, 2012, 45, 6938-6945.                                                                         | 4.8 | 48        |
| 47 | New TIPS-substituted benzo[1,2-b:4,5-b′]dithiophene-based copolymers for application in polymer solar cells. Journal of Materials Chemistry, 2012, 22, 22224.                                                                | 6.7 | 42        |
| 48 | Effect of side chain position on solar cell performance in cyclopentadithiophene-based copolymers.<br>Thin Solid Films, 2012, 520, 5438-5441.                                                                                | 1.8 | 8         |
| 49 | Synthesis and characterization of a thiazolo[5,4-d]thiazole-based copolymer for high performance polymer solar cells. Chemical Communications, 2011, 47, 1791-1793.                                                          | 4.1 | 129       |
| 50 | Synthesis and Photovoltaic Properties of Quinoxaline-Based Alternating Copolymers for<br>High-Efficiency Bulk-Heterojunction Polymer Solar Cells. Macromolecules, 2011, 44, 5994-6001.                                       | 4.8 | 63        |
| 51 | Effects of substituted side-chain position on donor-acceptor conjugated copolymers. Journal of<br>Polymer Science Part A, 2011, 49, 1821-1829.                                                                               | 2.3 | 31        |
| 52 | Synthesis and characterization of thiazolothiazoleâ€based polymers and their applications in polymer solar cells. Journal of Polymer Science Part A, 2011, 49, 3129-3137.                                                    | 2.3 | 22        |
| 53 | Bulk heterojunction polymer solar cells based on binary and ternary blend systems. Journal of<br>Polymer Science Part A, 2011, 49, 4416-4424.                                                                                | 2.3 | 21        |
| 54 | Synthesis and characterization of lowâ€bandgap cyclopentadithiopheneâ€biselenophene copolymer and<br>its use in fieldâ€effect transistor and polymer solar cells. Journal of Polymer Science Part A, 2009, 47,<br>6873-6882. | 2.3 | 33        |

SANG KYU LEE

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Alternating fluorene copolymers containing isothianaphthene derivatives: A study of their<br>aggregation properties and small band gap. Journal of Polymer Science Part A, 2008, 46, 3573-3590.                     | 2.3 | 25        |
| 56 | Synthesis of new polyfluorene copolymers with a comonomer containing triphenylamine units and their applications in white-light-emitting diodes. Journal of Polymer Science Part A, 2007, 45, 1199-1209.            | 2.3 | 65        |
| 57 | White electroluminescence from a single polyfluorene containing bis-DCM units. Journal of Polymer<br>Science Part A, 2007, 45, 3380-3390.                                                                           | 2.3 | 31        |
| 58 | Fluorene copolymers containing bithiophene/2,5- or 2,6-pyridine units: A study of their optical,<br>electrochemical, and electroluminescence properties. Journal of Polymer Science Part A, 2006, 44,<br>4611-4620. | 2.3 | 36        |
| 59 | Fluorene-based alternating polymers containing electron-withdrawing bithiazole units: Preparation and device applications. Journal of Polymer Science Part A, 2005, 43, 1845-1857.                                  | 2.3 | 88        |