Hui Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6017091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano, 2016, 10, 484-491.	14.6	1,872
2	Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale, 2014, 6, 13817-13823.	5.6	497
3	Solvent ontrolled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths. Small, 2018, 14, e1800612.	10.0	449
4	Red-Emissive Carbon Dots for Fingerprints Detection by Spray Method: Coffee Ring Effect and Unquenched Fluorescence in Drying Process. ACS Applied Materials & Interfaces, 2017, 9, 18429-18433.	8.0	268
5	Highly Efficient Red-Emitting Carbon Dots with Gram-Scale Yield for Bioimaging. Langmuir, 2017, 33, 12635-12642.	3.5	222
6	Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. Journal of Materials Chemistry B, 2017, 5, 5272-5277.	5.8	209
7	Robust Negative Electrode Materials Derived from Carbon Dots and Porous Hydrogels for Highâ€Performance Hybrid Supercapacitors. Advanced Materials, 2019, 31, e1806197.	21.0	194
8	Carbon Dots/NiCo ₂ O ₄ Nanocomposites with Various Morphologies for High Performance Supercapacitors. Small, 2016, 12, 5927-5934.	10.0	190
9	Surface states of carbon dots and their influences on luminescence. Journal of Applied Physics, 2020, 127, .	2.5	180
10	Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon, 2020, 167, 322-344.	10.3	164
11	Luminescent carbon quantum dots and their application in cell imaging. New Journal of Chemistry, 2013, 37, 2515.	2.8	149
12	Hierarchical Porous Carbon Materials with High Capacitance Derived from Schiff-Base Networks. ACS Applied Materials & Interfaces, 2015, 7, 5811-5819.	8.0	108
13	Highly fluorescent near-infrared emitting carbon dots derived from lemon juice and its bioimaging application. Journal of Luminescence, 2019, 211, 298-304.	3.1	82
14	Nitrogen-doped carbon dots derived from polyvinyl pyrrolidone and their multicolor cell imaging. Nanotechnology, 2014, 25, 205604.	2.6	71
15	Large scale synthesis of full-color emissive carbon dots from a single carbon source by a solvent-free method. Nano Research, 2022, 15, 3548-3555.	10.4	68
16	Exploring the blue luminescence origin of nitrogen-doped carbon dots by controlling the water amount in synthesis. RSC Advances, 2015, 5, 66528-66533.	3.6	53
17	Preparation of porous carbon electrodes from semen cassiae for high-performance electric double-layer capacitors. New Journal of Chemistry, 2018, 42, 6763-6769.	2.8	29
18	High volumetric supercapacitor with a long life span based on polymer dots and graphene sheets. Journal of Power Sources, 2017, 364, 465-472.	7.8	27

Ниі Дімс

#	Article	IF	CITATIONS
19	A type II heterojunction α-Fe ₂ O ₃ /g-C ₃ N ₄ for the heterogeneous photo-Fenton degradation of phenol. RSC Advances, 2022, 12, 8300-8309.	3.6	14
20	In-situ self-assembly host-guest carbon aerogels for robust electrochemical capacitors. Electrochimica Acta, 2020, 364, 137285.	5.2	8
21	Integrated Carbon Dots-Matrix Structures: An Efficient Strategy for High-Performance Electric Double Layer Capacitors. ACS Applied Energy Materials, 2020, 3, 4958-4964.	5.1	5
22	Polydopamine-Based Surface Modification of Chlorella Microspheres for Multiple Environmental Applications. Journal of Nanoscience and Nanotechnology, 2021, 21, 3065-3071.	0.9	3
23	Carbon aerogels with mutual support structures constructed by hybrid hydrogels: Robust energy storage materials. Materials Today Communications, 2020, 25, 101444.	1.9	2