Yu Yang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6017013/yu-yang-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

52	1,288 citations	23	34
papers		h-index	g-index
53 ext. papers	1,677 ext. citations	8.6 avg, IF	4.82 L-index

#	Paper	IF	Citations
52	Introduction of N-containing moieties by ammonia plasma technique can substantially improve ciprofloxacin removal by biochar and the associated mechanisms: Spectroscopic and site energy distribution analysis. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127438	12.8	О
51	Modeling the fate and human health impacts of pharmaceuticals and personal care products in reclaimed wastewater irrigation for agriculture. <i>Environmental Pollution</i> , 2021 , 276, 116532	9.3	8
50	A mechanistic study on removal efficiency of four antibiotics by animal and plant origin precursors-derived biochars. <i>Science of the Total Environment</i> , 2021 , 772, 145468	10.2	19
49	Quantification of carboxyl-functionalized multiwall carbon nanotubes in plant tissues with programmed thermal analysis. <i>Journal of Environmental Quality</i> , 2021 , 50, 278-285	3.4	
48	Application of TiO nanoparticles to reduce bioaccumulation of arsenic in rice seedlings (Oryza sativa L.): A mechanistic study. <i>Journal of Hazardous Materials</i> , 2021 , 405, 124047	12.8	28
47	Stronger impacts of long-term relative to short-term exposure to carbon nanomaterials on soil bacterial communities. <i>Journal of Hazardous Materials</i> , 2021 , 410, 124550	12.8	4
46	Reclaimed wastewater as a viable water source for agricultural irrigation: A review of food crop growth inhibition and promotion in the context of environmental change. <i>Science of the Total Environment</i> , 2020 , 739, 139756	10.2	23
45	Multifocal 1064 nm Raman imaging of carbon nanotubes. <i>Optics Letters</i> , 2020 , 45, 5132-5135	3	1
44	Potential application of titanium dioxide nanoparticles to improve the nutritional quality of coriander (Coriandrum sativum L.). <i>Journal of Hazardous Materials</i> , 2020 , 389, 121837	12.8	35
43	Anaerobic Dehalogenation by Reduced Aqueous Biochars. <i>Environmental Science & Environmental Science &</i>	10.3	5
42	Trace organic contaminants in field-scale cultivated alfalfa, soil, and pore water after 10 years of irrigation with reclaimed wastewater. <i>Science of the Total Environment</i> , 2020 , 744, 140698	10.2	6
41	Emerging investigator series: quantification of multiwall carbon nanotubes in plant tissues with spectroscopic analysis. <i>Environmental Science: Nano</i> , 2019 , 6, 380-387	7.1	7
40	Plasma assisted-synthesis of magnetic TiO/SiO/FeO-polyacrylic acid microsphere and its application for lead removal from water. <i>Science of the Total Environment</i> , 2019 , 681, 124-132	10.2	16
39	Effects of Various Carbon Nanotubes on Soil Bacterial Community Composition and Structure. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	22
38	Biogeochemical fate of ferrihydrite-model organic compound complexes during anaerobic microbial reduction. <i>Science of the Total Environment</i> , 2019 , 668, 216-223	10.2	4
37	Humic Acid Can Enhance the Mineralization of Phenanthrene Sorbed on Biochars. <i>Environmental Science & Environmental Science &</i>	10.3	5
36	Aerobic respiration of mineral-bound organic carbon in a soil. <i>Science of the Total Environment</i> , 2019 , 651, 1253-1260	10.2	13

(2017-2019)

35	Formation and redox reactivity of ferrihydrite-organic carbon-calcium co-precipitates. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 244, 86-98	5.5	21
34	Development and application of a digestion-Raman analysis approach for studying multiwall carbon nanotube uptake in lettuce. <i>Environmental Science: Nano</i> , 2018 , 5, 659-668	7.1	14
33	Dual Role of Humic Substances As Electron Donor and Shuttle for Dissimilatory Iron Reduction. <i>Environmental Science & Environmental &</i>	10.3	63
32	Effect of minerals on the stability of biochar. <i>Chemosphere</i> , 2018 , 204, 310-317	8.4	60
31	A mechanistic study of stable dispersion of titanium oxide nanoparticles by humic acid. <i>Water Research</i> , 2018 , 135, 85-94	12.5	12
30	Bioaccumulation of C-Labeled Graphene in an Aquatic Food Chain through Direct Uptake or Trophic Transfer. <i>Environmental Science & Environmental Scien</i>	10.3	25
29	Transformation of 14C-Labeled Graphene to 14CO2 in the Shoots of a Rice Plant. <i>Angewandte Chemie</i> , 2018 , 130, 9907-9911	3.6	13
28	Digestion Coupled with Programmed Thermal Analysis for Quantification of Multiwall Carbon Nanotubes in Plant Tissues. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 442-447	11	5
27	Carbon nanomaterials differentially impact mineralization kinetics of phenanthrene and indigenous microbial communities in a natural soil. <i>NanoImpact</i> , 2018 , 11, 146-155	5.6	7
26	Transformation of C-Labeled Graphene to CO in the Shoots of a Rice Plant. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9759-9763	16.4	30
25	Stability of Ferrihydrite-Humic Acid Coprecipitates under Iron-Reducing Conditions. <i>Environmental Science & Environmental Sci</i>	10.3	18
24	Spatial Associations and Chemical Composition of Organic Carbon Sequestered in Fe, Ca, and Organic Carbon Ternary Systems. <i>Environmental Science & Environmental Science & En</i>	10.3	40
23	Effect of multiwalled carbon nanotubes on uptake of pyrene by cucumber (Cucumis sativus L.): Mechanistic perspectives. <i>NanoImpact</i> , 2018 , 10, 168-176	5.6	8
22	Coupled dynamics of iron and iron-bound organic carbon in forest soils during anaerobic reduction. <i>Chemical Geology</i> , 2017 , 464, 118-126	4.2	43
21	Microbial Transformation of Multiwalled Carbon Nanotubes by Mycobacterium vanbaalenii PYR-1. <i>Environmental Science & Environmental Science & Environm</i>	10.3	21
20	Emerging investigator series: dual role of organic matter in the anaerobic degradation of triclosan. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 499-506	4.3	4
19	Identifying structural characteristics of humic acid to static and dynamic fluorescence quenching of phenanthrene, 9-phenanthrol, and naphthalene. <i>Water Research</i> , 2017 , 122, 337-344	12.5	23
18	Influence of multiwalled carbon nanotubes and sodium dodecyl benzene sulfonate on bioaccumulation and translocation of pyrene and 1-methylpyrene in maize (Zea mays) seedlings. <i>Environmental Pollution</i> , 2017 , 220, 1409-1417	9.3	9

17	Association of 16 priority polycyclic aromatic hydrocarbons with humic acid and humin fractions in a peat soil and implications for their long-term retention. <i>Environmental Pollution</i> , 2017 , 230, 882-890	9.3	33
16	Influence of multi-walled carbon nanotubes and fullerenes on the bioaccumulation and elimination kinetics of phenanthrene in geophagous earthworms (Metaphire guillelmi). <i>Environmental Science: Nano</i> , 2017 , 4, 1887-1899	7.1	7
15	Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 212, 221-233	5.5	63
14	Asynchronous reductive release of iron and organic carbon from hematiteBumic acid complexes. <i>Chemical Geology</i> , 2016 , 430, 13-20	4.2	28
13	Biochar-Facilitated Microbial Reduction of Hematite. <i>Environmental Science & Environmental Science & </i>	10.3	110
12	Biodegradation, Biosorption of Phenanthrene and Its Trans-Membrane Transport by Massilia sp. WF1 and Phanerochaete chrysosporium. <i>Frontiers in Microbiology</i> , 2016 , 7, 38	5.7	37
11	Impact of humic acid coating on sorption of naphthalene by biochars. <i>Carbon</i> , 2015 , 94, 946-954	10.4	27
10	Selective stabilization of aliphatic organic carbon by iron oxide. <i>Scientific Reports</i> , 2015 , 5, 11214	4.9	63
9	Destruction of methyl bromide sorbed to activated carbon by thiosulfate or electrolysis. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	12
8	Impact of interactions between natural organic matter and metal oxides on the desorption kinetics of uranium from heterogeneous colloidal suspensions. <i>Environmental Science & Environmental Science </i>	10.3	36
7	Impact of natural organic matter on uranium transport through saturated geologic materials: from molecular to column scale. <i>Environmental Science & Environmental & E</i>	10.3	47
6	Mechanisms regulating bioavailability of phenanthrene sorbed on a peat soil-origin humic substance. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 1431-7	3.8	15
5	Impact of de-ashing humic Acid and humin on organic matter structural properties and sorption mechanisms of phenanthrene. <i>Environmental Science & Environmental Science & Env</i>	10.3	73
4	Effects of composition and domain arrangement of biopolymer components of soil organic matter on the bioavailability of phenanthrene. <i>Environmental Science & Dioavailability of phenanthrene</i> (2016) 44, 3339-44	10.3	25
3	Bioavailability of sorbed phenanthrene and permethrin in sediments to Chironomus tentans. <i>Aquatic Toxicology</i> , 2010 , 98, 83-90	5.1	19
2	Effect of activated carbon on microbial bioavailability of phenanthrene in soils. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 2283-8	3.8	32
1	Microbial availability of different forms of phenanthrene in soils. <i>Environmental Science & Environmental Science & Technology</i> , 2009 , 43, 1852-7	10.3	48