Sarah M Knox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6016583/publications.pdf Version: 2024-02-01

SADAH M KNOX

#	Article	IF	CITATIONS
1	Exocrine gland structure-function relationships. Development (Cambridge), 2022, 149, .	2.5	15
2	Aldehyde dehydrogenase 3A1 deficiency leads to mitochondrial dysfunction and impacts salivary gland stem cell phenotype. , 2022, 1, .		0
3	Septum submucosal glands exhibit aberrant morphology and reduced mucin production in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2021, 11, 1443-1451.	2.8	2
4	Functional Specialization of Human Salivary Glands and Origins of Proteins Intrinsic to Human Saliva. Cell Reports, 2020, 33, 108402.	6.4	54
5	Alterations in corneal biomechanics underlie early stages of autoimmune-mediated dry eye disease. Journal of Autoimmunity, 2020, 114, 102500.	6.5	13
6	Roadmap for the Emerging Field of Cancer Neuroscience. Cell, 2020, 181, 219-222.	28.9	182
7	The emerging role of cranial nerves in shaping craniofacial development. Genesis, 2019, 57, e23282.	1.6	13
8	Salivary gland stem cells: A review of development, regeneration and cancer. Genesis, 2018, 56, e23211.	1.6	70
9	Salivary glands regenerate after radiation injury through SOX2â€mediated secretory cell replacement. EMBO Molecular Medicine, 2018, 10, .	6.9	86
10	Deciphering Molecular and Phenotypic Changes Associated with Early Autoimmune Disease in the Aire-Deficient Mouse Model of Sjögren's Syndrome. International Journal of Molecular Sciences, 2018, 19, 3628.	4.1	12
11	Lineage dynamics of murine pancreatic development at single-cell resolution. Nature Communications, 2018, 9, 3922.	12.8	137
12	Diverse progenitor cells preserve salivary gland ductal architecture after radiation induced damage. Development (Cambridge), 2018, 145, .	2.5	53
13	Aldehyde dehydrogenase 3A1 activation prevents radiation-induced xerostomia by protecting salivary stem cells from toxic aldehydes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6279-6284.	7.1	23
14	miR-205 is a critical regulator of lacrimal gland development. Developmental Biology, 2017, 427, 12-20.	2.0	7
15	Identification and characterization of a rich population of CD34+ mesenchymal stem/stromal cells in human parotid, sublingual and submandibular glands. Scientific Reports, 2017, 7, 3484.	3.3	24
16	Aire-deficient mice provide a model of corneal and lacrimal gland neuropathy in Sjögren's syndrome. PLoS ONE, 2017, 12, e0184916.	2.5	42
17	Defining epithelial cell dynamics and lineage relationships in the developing lacrimal gland. Development (Cambridge), 2017, 144, 2517-2528.	2.5	32
18	SOX2 regulates acinar cell development in the salivary gland. ELife, 2017, 6, .	6.0	78

Sarah M Knox

#	Article	IF	CITATIONS
19	Salivary gland development and disease. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 573-590.	5.9	41
20	Submandibular Parasympathetic Gangliogenesis Requires Sprouty-Dependent Wnt Signals from Epithelial Progenitors. Developmental Cell, 2015, 32, 667-677.	7.0	58
21	Parasympathetic Innervation Regulates Tubulogenesis in the Developing Salivary Gland. Developmental Cell, 2014, 30, 449-462.	7.0	124
22	Manipulating the Murine Lacrimal Gland. Journal of Visualized Experiments, 2014, , e51970.	0.3	11
23	The society of craniofacial genetics and developmental biology 35th annual meeting. American Journal of Medical Genetics, Part A, 2013, 161, 2938-2952.	1.2	0
24	Parasympathetic stimulation improves epithelial organ regeneration. Nature Communications, 2013, 4, 1494.	12.8	166
25	Salivary gland organogenesis. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 69-82.	5.9	69
26	Salivary gland progenitor cell biology provides a rationale for therapeutic salivary gland regeneration. Oral Diseases, 2011, 17, 445-449.	3.0	78
27	Heparan Sulfate-Dependent Signaling of Fibroblast Growth Factor 18 by Chondrocyte-Derived Perlecan. Biochemistry, 2010, 49, 5524-5532.	2.5	92
28	Recombinant heparan sulfate for use in tissue engineering applications. Journal of Chemical Technology and Biotechnology, 2008, 83, 496-504.	3.2	8
29	Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development (Cambridge), 2007, 134, 4177-4186.	2.5	147
30	Mechanisms of TSC-mediated Control of Synapse Assembly and Axon Guidance. PLoS ONE, 2007, 2, e375.	2.5	50
31	The function of a Drosophila glypican does not depend entirely on heparan sulfate modification. Developmental Biology, 2006, 300, 570-582.	2.0	90
32	The Structure, Location, and Function of Perlecan, a Prominent Pericellular Proteoglycan of Fetal, Postnatal, and Mature Hyaline Cartilages. Journal of Biological Chemistry, 2006, 281, 36905-36914.	3.4	81
33	Perlecan from human epithelial cells is a hybrid heparan/chondroitin/keratan sulfate proteoglycan. FEBS Letters, 2005, 579, 5019-5023.	2.8	50
34	Not All Perlecans Are Created Equal. Journal of Biological Chemistry, 2002, 277, 14657-14665.	3.4	139
35	Perlecan, the multidomain HS-proteoglycan of basement membranes, is a prominent pericellular component of ovine hypertrophic vertebral growth plate and cartilaginous endplate chondrocytes. Histochemistry and Cell Biology, 2002, 118, 269-280.	1.7	29
36	Electrophoretic, biosensor, and bioactivity analyses of perlecans of different cellular origins. Proteomics, 2001, 1, 1534.	2.2	41