
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6016100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Real-Time Predictive Control for Chemical Distribution in Sewer Networks Using Improved Elephant Herding Optimization. IEEE Transactions on Industrial Informatics, 2022, 18, 571-581.	7.2	11
2	Insights of metallic nanoparticles and ions in accelerating the bacterial uptake of antibiotic resistance genes. Journal of Hazardous Materials, 2022, 421, 126728.	6.5	38
3	Corrosion mitigation by nitrite spray on corroded concrete in a real sewer system. Science of the Total Environment, 2022, 806, 151328.	3.9	10
4	Evaluation of continuous and intermittent trickling strategies for the removal of hydrogen sulfide in a biotrickling filter. Chemosphere, 2022, 291, 132723.	4.2	10
5	Copper stimulation on methane-supported perchlorate reduction in a membrane biofilm reactor. Journal of Hazardous Materials, 2022, 425, 127917.	6.5	6
6	Swift hydraulic models for real-time control applications in sewer networks. Water Research, 2022, 213, 118141.	5.3	14
7	Roles of reactive oxygen species in antibiotic resistant bacteria inactivation and micropollutant degradation in Fenton and photo-Fenton processes. Journal of Hazardous Materials, 2022, 430, 128408.	6.5	49
8	An Integrated First Principal and Deep Learning Approach for Modeling Nitrous Oxide Emissions from Wastewater Treatment Plants. Environmental Science & Technology, 2022, 56, 2816-2826.	4.6	23
9	Gravity settling and centrifugation increase the acid buffer capacity of activated sludge. Science of the Total Environment, 2022, 820, 153231.	3.9	3
10	A Genome-Scale Metabolic Model of Methanoperedens nitroreducens: Assessing Bioenergetics and Thermodynamic Feasibility. Metabolites, 2022, 12, 314.	1.3	4
11	Reactive nitrogen species from free nitrous acid (FNA) cause cell lysis. Water Research, 2022, 217, 118401.	5.3	13
12	Modelling of methane production and emissions. , 2022, , 197-212.		0
13	Modelling N2O production and emissions. , 2022, , 167-196.		0
14	Formation and fate of perfluoroalkyl acids (PFAAs) in a laboratory-scale urban wastewater system. Water Research, 2022, 216, 118295.	5.3	7
15	Recovery of ammonium nitrate solution from urine wastewater via novel free nitrous acid (FNA)-mediated two-stage processes. Chemical Engineering Journal, 2022, 440, 135826.	6.6	8
16	Bio-reduced graphene oxide on hollow fibers as gas-diffusible anodes for enhancing bioelectrochemical methane oxidation. Chemical Engineering Journal, 2022, 440, 135811.	6.6	8
17	Regulating the reaction zone of electrochemical CO2 reduction on gas-diffusion electrodes by distinctive hydrophilic-hydrophobic catalyst layers. Applied Catalysis B: Environmental, 2022, 310, 121362.	10.8	21
18	Response of the Anaerobic Methanotrophic Archaeon Candidatus "Methanoperedens nitroreducens― to the Long-Term Ferrihydrite Amendment. Frontiers in Microbiology, 2022, 13, 799859.	1.5	5

#	Article	IF	CITATIONS
19	Transformation and fate of pharmaceuticals, personal care products, and per- and polyfluoroalkyl substances during aerobic digestion of anaerobically digested sludge. Water Research, 2022, 219, 118568.	5.3	10
20	Re-configuring mainstream anammox. Chemical Engineering Journal, 2022, 445, 136817.	6.6	6
21	Transforming anaerobically digested sludge into high-quality biosolids with an integrated physiochemical approach. Resources, Conservation and Recycling, 2022, 184, 106416.	5.3	22
22	Sewerage surveillance tracking characteristics of human antibiotic emission in sewage. Journal of Cleaner Production, 2022, 364, 132479.	4.6	8
23	Wastewater Primary Treatment Using Forward Osmosis Introduces Inhibition to Achieve Stable Mainstream Partial Nitrification. Environmental Science & Technology, 2022, 56, 8663-8672.	4.6	15
24	A 20-Year Journey of Partial Nitritation and Anammox (PN/A): from Sidestream toward Mainstream. Environmental Science & Technology, 2022, 56, 7522-7531.	4.6	106
25	Polyhydroxyalkanoate-driven current generation via acetate by an anaerobic methanotrophic consortium. Water Research, 2022, 221, 118743.	5.3	10
26	Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS ₂ @GO-Based Heterogeneous Photo-Fenton Process. Environmental Science & Technology, 2022, 56, 15156-15166.	4.6	31
27	Fate characteristics, exposure risk, and control strategy of typical antibiotics in Chinese sewerage system: A review. Environment International, 2022, 167, 107396.	4.8	9
28	Increasing the removal efficiency of antibiotic resistance through anaerobic digestion with free nitrous acid pretreatment. Journal of Hazardous Materials, 2022, 438, 129535.	6.5	17
29	Structural changes in model compounds of sludge extracellular polymeric substances caused by exposure to free nitrous acid. Water Research, 2021, 188, 116553.	5.3	19
30	Temperature Variations Shape Niche Occupation of <i>Nitrotoga</i> -like Bacteria in Activated Sludge. ACS ES&T Water, 2021, 1, 167-174.	2.3	18
31	Study of free nitrous acid (FNA)-based elimination of sulfamethoxazole: Kinetics, transformation pathways, and toxicity assessment. Water Research, 2021, 189, 116629.	5.3	20
32	Recovery of Nitrous Oxide from Wastewater Treatment: Current Status and Perspectives. ACS ES&T Water, 2021, 1, 240-250.	2.3	16
33	Anaerobic Oxidation of Methane Coupled with Dissimilatory Nitrate Reduction to Ammonium Fuels Anaerobic Ammonium Oxidation. Environmental Science & Technology, 2021, 55, 1197-1208.	4.6	46
34	An investigation into the impacts of water demand management and decentralized water recycling on excess sewer sediment deposition. Journal of Environmental Management, 2021, 279, 111788.	3.8	1
35	Transformation of phthalates and their metabolites in wastewater under different sewer conditions. Water Research, 2021, 190, 116754.	5.3	14
36	Inactivation kinetics of nitrite-oxidizing bacteria by free nitrous acid. Science of the Total Environment, 2021, 752, 141876.	3.9	23

#	Article	IF	CITATIONS
37	Formation and partitioning behaviour of perfluoroalkyl acids (PFAAs) in waste activated sludge during anaerobic digestion. Water Research, 2021, 189, 116583.	5.3	19
38	The impact of primary sedimentation on the use of iron-rich drinking water sludge on the urban wastewater system. Journal of Hazardous Materials, 2021, 402, 124051.	6.5	16
39	Roles and opportunities for microbial anaerobic oxidation of methane in natural and engineered systems. Energy and Environmental Science, 2021, 14, 4803-4830.	15.6	40
40	Microbial Perchlorate Reduction Driven by Ethane and Propane. Environmental Science & Technology, 2021, 55, 2006-2015.	4.6	14
41	Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy and Environmental Science, 2021, 14, 1959-2008.	15.6	243
42	Robust Nitritation Sustained by Acid-Tolerant Ammonia-Oxidizing Bacteria. Environmental Science & Technology, 2021, 55, 2048-2056.	4.6	51
43	Non-antibiotic pharmaceuticals promote the transmission of multidrug resistance plasmids through intra- and intergenera conjugation. ISME Journal, 2021, 15, 2493-2508.	4.4	76
44	Amphiphilic Perfluoropolyether Copolymers for the Effective Removal of Polyfluoroalkyl Substances from Aqueous Environments. Macromolecules, 2021, 54, 3447-3457.	2.2	18
45	Versatility of nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO): First demonstration with real wastewater. Water Research, 2021, 194, 116912.	5.3	32
46	Simultaneous nitrate and sulfate dependent anaerobic oxidation of methane linking carbon, nitrogen and sulfur cycles. Water Research, 2021, 194, 116928.	5.3	43
47	Acidic aerobic digestion of anaerobically-digested sludge enabled by a novel ammonia-oxidizing bacterium. Water Research, 2021, 194, 116962.	5.3	16
48	Rapid formation of granules coupling n-DAMO and anammox microorganisms to remove nitrogen. Water Research, 2021, 194, 116963.	5.3	45
49	An integrated strategy to enhance performance of anaerobic digestion of waste activated sludge. Water Research, 2021, 195, 116977.	5.3	41
50	Stoichiometric and kinetic characterization of an acid-tolerant ammonia oxidizer †Candidatus Nitrosoglobus'. Water Research, 2021, 196, 117026.	5.3	22
51	Insights into Nitrous Oxide Mitigation Strategies in Wastewater Treatment and Challenges for Wider Implementation. Environmental Science & Technology, 2021, 55, 7208-7224.	4.6	57
52	Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions. Water Research, 2021, 197, 117120.	5.3	43
53	Feasibility of methane bioconversion to methanol by acid-tolerant ammonia-oxidizing bacteria. Water Research, 2021, 197, 117077.	5.3	12
54	Exploring the Spatial Impact of Green Infrastructure on Urban Drainage Resilience. Water (Switzerland), 2021, 13, 1789.	1.2	11

#	Article	IF	CITATIONS
55	Simultaneous removal of antibiotic resistant bacteria, antibiotic resistance genes, and micropollutants by a modified photo-Fenton process. Water Research, 2021, 197, 117075.	5.3	80
56	Development of radio-frequency identification (RFID) sensors suitable for smart-monitoring applications in sewer systems. Water Research, 2021, 198, 117107.	5.3	18
57	Shape-tuned electrodeposition of bismuth-based nanosheets on flow-through hollow fiber gas diffusion electrode for high-efficiency CO2 reduction to formate. Applied Catalysis B: Environmental, 2021, 286, 119945.	10.8	77
58	Effects of pH, Temperature, Suspended Solids, and Biological Activity on Transformation of Illicit Drug and Pharmaceutical Biomarkers in Sewers. Environmental Science & Technology, 2021, 55, 8771-8782.	4.6	26
59	Roles of Oxygen in Methane-dependent Selenate Reduction in a Membrane Biofilm Reactor: Stimulation or Suppression. Water Research, 2021, 198, 117150.	5.3	14
60	Novel Multiplexed Amplicon-Based Sequencing to Quantify SARS-CoV-2 RNA from Wastewater. Environmental Science and Technology Letters, 2021, 8, 683-690.	3.9	15
61	Cross-feeding interactions in short chain gaseous alkane-driven perchlorate and selenate reduction. Water Research, 2021, 200, 117215.	5.3	7
62	Bioleaching of toxic metals from anaerobically digested sludge without external chemical addition. Water Research, 2021, 200, 117211.	5.3	10
63	Interactions of functional microorganisms and their contributions to methane bioconversion to short-chain fatty acids. Water Research, 2021, 199, 117184.	5.3	10
64	Unravelling adaptation of nitrite-oxidizing bacteria in mainstream PN/A process: Mechanisms and counter-strategies. Water Research, 2021, 200, 117239.	5.3	81
65	Biotrickling filter for the removal of volatile sulfur compounds from sewers: A review. Chemosphere, 2021, 277, 130333.	4.2	26
66	Strategies to improve viability of a circular carbon bioeconomy-A techno-economic review of microbial electrosynthesis and gas fermentation. Water Research, 2021, 201, 117306.	5.3	43
67	Comparative life cycle assessment of sewer corrosion control by iron salts: Suitability analysis and strategy optimization. Water Research, 2021, 201, 117370.	5.3	10
68	Centralized iron-dosing into returned sludge brings multifaceted benefits to wastewater management. Water Research, 2021, 203, 117536.	5.3	16
69	Anaerobic oxidation of methane mediated by microbial extracellular respiration. Environmental Microbiology Reports, 2021, 13, 790-804.	1.0	20
70	Efficient nitrogen removal from mainstream wastewater through coupling Partial Nitritation, Anammox and Methane-dependent nitrite/nitrate reduction (PNAM). Water Research, 2021, 206, 117723.	5.3	37
71	Achieving combined biological short-cut nitrogen and phosphorus removal in a one sludge system with side-stream sludge treatment. Water Research, 2021, 203, 117563.	5.3	22
72	A novel granular sludge-based and highly corrosion-resistant bio-concrete in sewers. Science of the Total Environment, 2021, 791, 148270.	3.9	27

#	Article	IF	CITATIONS
73	Post-treatment options for anaerobically digested sludge: Current status and future prospect. Water Research, 2021, 205, 117665.	5.3	28
74	Synergistic effect on concrete corrosion control in sewer environment achieved by applying surface washing on calcium nitrite admixed concrete. Construction and Building Materials, 2021, 302, 124184.	3.2	11
75	Enhancing anaerobic digestion using free nitrous acid: Identifying the optimal pre-treatment condition in continuous operation. Water Research, 2021, 205, 117694.	5.3	10
76	In-sewer stability of selected analgesics and their metabolites. Water Research, 2021, 204, 117647.	5.3	9
77	The origin of waste activated sludge affects the enhancement of anaerobic digestion by free nitrous acid pre-treatment. Science of the Total Environment, 2021, 795, 148831.	3.9	17
78	Stand-alone asymmetric hollow fiber gas-diffusion electrodes with distinguished bronze phases for high-efficiency CO2 electrochemical reduction. Applied Catalysis B: Environmental, 2021, 298, 120538.	10.8	35
79	In Situ Exploration of the Sulfidogenic Process at the Water-Sediment Interface in Sewers: Mechanism and Implications. ACS ES&T Engineering, 2021, 1, 415-423.	3.7	15
80	CFD Simulation of Dry Pressure Drop in a Cross-Flow Rotating Packed Bed. Applied Sciences (Switzerland), 2021, 11, 10099.	1.3	2
81	Granular Sludge Coupling Nitrate/Nitrite Dependent Anaerobic Methane Oxidation with Anammox: from Proof-of-Concept to High Rate Nitrogen Removal. Environmental Science & Technology, 2020, 54, 297-305.	4.6	54
82	Rapid and strong biocidal effect of ferrate on sulfidogenic and methanogenic sewer biofilms. Water Research, 2020, 169, 115208.	5.3	38
83	Nitrite admixed concrete for wastewater structures: Mechanical properties, leaching behavior and biofilm development. Construction and Building Materials, 2020, 233, 117341.	3.2	27
84	Water in China. Water Research, 2020, 169, 115256.	5.3	14
85	Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Water Research, 2020, 169, 115229.	5.3	179
86	Effects of in-sewer dosing of iron-rich drinking water sludge on wastewater collection and treatment systems. Water Research, 2020, 171, 115396.	5.3	40
87	Wastewater treatment technology selection under various influent conditions and effluent standards based on life cycle assessment. Resources, Conservation and Recycling, 2020, 154, 104562.	5.3	34
88	Improving wastewater management using free nitrous acid (FNA). Water Research, 2020, 171, 115382.	5.3	111
89	Mitigating nitrous oxide emissions at a full-scale wastewater treatment plant. Water Research, 2020, 185, 116196.	5.3	48
90	Control sulfide and methane production in sewers based on free ammonia inactivation. Environment International, 2020, 143, 105928.	4.8	33

#	Article	IF	CITATIONS
91	Revealing the variations in physicochemical, morphological, fractal, and rheological properties of digestate during the mesophilic anaerobic digestion of iron-rich waste activated sludge. Chemosphere, 2020, 254, 126811.	4.2	2
92	Critical Factors Facilitating <i>Candidatus</i> Nitrotoga To Be Prevalent Nitrite-Oxidizing Bacteria in Activated Sludge. Environmental Science & Technology, 2020, 54, 15414-15423.	4.6	43
93	Structural Changes in Cell-Wall and Cell-Membrane Organic Materials Following Exposure to Free Nitrous Acid. Environmental Science & amp; Technology, 2020, 54, 10301-10312.	4.6	21
94	Synergistic inhibitory effects of free nitrous acid and imidazoline derivative on metal corrosion in a simulated water injection system. Water Research, 2020, 184, 116122.	5.3	18
95	Biogas-driven complete nitrogen removal from wastewater generated in side-stream partial nitritation. Science of the Total Environment, 2020, 745, 141153.	3.9	16
96	Effects of aging of ferric-based drinking water sludge on its reactivity for sulfide and phosphate removal. Water Research, 2020, 184, 116179.	5.3	15
97	Enhancing methane oxidation in a bioelectrochemical membrane reactor using a soluble electron mediator. Biotechnology for Biofuels, 2020, 13, 173.	6.2	20
98	Transformation of Illicit Drugs and Pharmaceuticals in Sewer Sediments. Environmental Science & Technology, 2020, 54, 13056-13065.	4.6	22
99	Efficient inactivation of antibiotic resistant bacteria and antibiotic resistance genes by photo-Fenton process under visible LED light and neutral pH. Water Research, 2020, 179, 115878.	5.3	112
100	Adaptation of nitrifying community in activated sludge to free ammonia inhibition and inactivation. Science of the Total Environment, 2020, 728, 138713.	3.9	58
101	Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation. ISME Journal, 2020, 14, 2179-2196.	4.4	133
102	Assessing the removal of organic micropollutants from wastewater by discharging drinking water sludge to sewers. Water Research, 2020, 181, 115945.	5.3	22
103	Development of granular sludge coupling n-DAMO and Anammox in membrane granular sludge reactor for high rate nitrogen removal. Environmental Research, 2020, 186, 109579.	3.7	14
104	Simultaneous Removal of Dissolved Methane and Nitrogen from Synthetic Mainstream Anaerobic Effluent. Environmental Science & Technology, 2020, 54, 7629-7638.	4.6	46
105	Microbial selenate reduction in membrane biofilm reactors using ethane and propane as electron donors. Water Research, 2020, 183, 116008.	5.3	12
106	Unravelling kinetic and microbial responses of enriched nitrifying sludge under long-term exposure of cephalexin and sulfadiazine. Water Research, 2020, 173, 115592.	5.3	33
107	Temperature-Tolerated Mainstream Nitrogen Removal by Anammox and Nitrite/Nitrate-Dependent Anaerobic Methane Oxidation in a Membrane Biofilm Reactor. Environmental Science & Technology, 2020, 54, 3012-3021.	4.6	56
108	SewerSedFoam: A Model for Free Surface Flow, Sediment Transport, and Deposited Bed Morphology in Sewers. Water (Switzerland), 2020, 12, 270.	1.2	4

#	Article	IF	CITATIONS
109	Model-based investigation of membrane biofilm reactors coupling anammox with nitrite/nitrate-dependent anaerobic methane oxidation. Environment International, 2020, 137, 105501.	4.8	29
110	Full-scale investigation of ferrous dosing in sewers and a wastewater treatment plant for multiple benefits. Chemosphere, 2020, 250, 126221.	4.2	30
111	The MOF/GOâ€based derivatives with Co@CoO coreâ€shell structure supported on the Nâ€doped graphene as electrocatalyst for oxygen reduction reaction. Journal of the Chinese Chemical Society, 2020, 67, 1189-1194.	0.8	11
112	Efficient nitrate removal from synthetic groundwater via in situ utilization of short-chain fatty acids from methane bioconversion. Chemical Engineering Journal, 2020, 393, 124594.	6.6	19
113	Recovery of in-sewer dosed iron from digested sludge at downstream treatment plants and its reuse potential. Water Research, 2020, 174, 115627.	5.3	35
114	Triclosan at environmental concentrations can enhance the spread of extracellular antibiotic resistance genes through transformation. Science of the Total Environment, 2020, 713, 136621.	3.9	75
115	Free nitrous acid pre-treatment enhances anaerobic digestion of waste activated sludge and rheological properties of digested sludge: A pilot-scale study. Water Research, 2020, 172, 115515.	5.3	32
116	Decreasing microbially influenced metal corrosion using free nitrous acid in a simulated water injection system. Water Research, 2020, 172, 115470.	5.3	17
117	Increased Resistance of Nitrite-Admixed Concrete to Microbially Induced Corrosion in Real Sewers. Environmental Science & Technology, 2020, 54, 2323-2333.	4.6	33
118	Effects of dosing iron- and alum-containing waterworks sludge on sulfide and phosphate removal in a pilot sewer. Chemical Engineering Journal, 2020, 387, 124073.	6.6	28
119	Free nitrous acid-based suppression of sulfide production in sewer sediments: In-situ effect mechanism. Science of the Total Environment, 2020, 715, 136871.	3.9	17
120	Free ammonia shock treatment eliminates nitrite-oxidizing bacterial activity for mainstream biofilm nitritation process. Chemical Engineering Journal, 2020, 393, 124682.	6.6	37
121	Dewaterability enhancement and sulfide mitigation of CEPT sludge by electrochemical pretreatment. Water Research, 2020, 176, 115727.	5.3	12
122	Tuning the Product Selectivity of the Cu Hollow Fiber Gas Diffusion Electrode for Efficient CO ₂ Reduction to Formate by Controlled Surface Sn Electrodeposition. ACS Applied Materials & Interfaces, 2020, 12, 21670-21681.	4.0	69
123	Advanced Wastewater Treatment and Mathematical Modeling. Journal of Environmental Engineering, ASCE, 2020, 146, 02020002.	0.7	Ο
124	Rebar corrosion and its interaction with concrete degradation in reinforced concrete sewers. Water Research, 2020, 182, 115961.	5.3	25
125	Anaerobic methane oxidation coupled to manganese reduction by members of the <i>Methanoperedenaceae</i> . ISME Journal, 2020, 14, 1030-1041.	4.4	203
126	Achieving mainstream nitrogen removal via the nitrite pathway from real municipal wastewater using intermittent ultrasonic treatment. Ultrasonics Sonochemistry, 2019, 51, 406-411.	3.8	35

#	Article	IF	CITATIONS
127	Opportunities for reducing coagulants usage in urban water management: The Oxley Creek Sewage Collection and Treatment System as an example. Water Research, 2019, 165, 114996.	5.3	17
128	Effects of ultrasonic treatment on the ammonia-oxidizing bacterial (AOB) growth kinetics. Science of the Total Environment, 2019, 690, 629-635.	3.9	30
129	Nitrite oxidizing bacteria (NOB) contained in influent deteriorate mainstream NOB suppression by sidestream inactivation. Water Research, 2019, 162, 331-338.	5.3	68
130	Microbial Methane Conversion to Short-Chain Fatty Acids Using Various Electron Acceptors in Membrane Biofilm Reactors. Environmental Science & Technology, 2019, 53, 12846-12855.	4.6	22
131	Insight into the nitrification kinetics and microbial response of an enriched nitrifying sludge in the biodegradation of sulfadiazine. Environmental Pollution, 2019, 255, 113160.	3.7	22
132	High performance nitrogen removal through integrating denitrifying anaerobic methane oxidation and Anammox: from enrichment to application. Environment International, 2019, 132, 105107.	4.8	51
133	Full-scale investigation of in-situ iron and alkalinity generation for efficient sulfide control. Water Research, 2019, 167, 115032.	5.3	19
134	High-level nitrogen removal by simultaneous partial nitritation, anammox and nitritation, anammox and nitrite/nitrate-dependent anaerobic methane oxidation. Water Research, 2019, 166, 115057.	5.3	80
135	Unravelling the influences of sewer-dosed iron salts on activated sludge properties with implications on settleability, dewaterability and sludge rheology. Water Research, 2019, 167, 115089.	5.3	27
136	Physiological and transcriptomic analyses reveal CuO nanoparticle inhibition of anabolic and catabolic activities of sulfate-reducing bacterium. Environment International, 2019, 125, 65-74.	4.8	46
137	Applications of high-gravity technologies in gas purifications: A review. Chinese Journal of Chemical Engineering, 2019, 27, 1361-1373.	1.7	42
138	Microbial chromate reduction coupled with anaerobic oxidation of methane in a membrane biofilm reactor. Environment International, 2019, 130, 104926.	4.8	35
139	The rapid chemically induced corrosion of concrete sewers at high H2S concentration. Water Research, 2019, 162, 95-104.	5.3	55
140	Acetate Production from Anaerobic Oxidation of Methane via Intracellular Storage Compounds. Environmental Science & Technology, 2019, 53, 7371-7379.	4.6	48
141	Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. Environment International, 2019, 129, 478-487.	4.8	171
142	Removal of Pharmaceuticals and Illicit Drugs from Wastewater Due to Ferric Dosing in Sewers. Environmental Science & Technology, 2019, 53, 6245-6254.	4.6	27
143	Biochar-Mediated Anaerobic Oxidation of Methane. Environmental Science & Technology, 2019, 53, 6660-6668.	4.6	92
144	Sweating the assets – The role of instrumentation, control and automation in urban water systems. Water Research, 2019, 155, 381-402.	5.3	76

#	Article	IF	CITATIONS
145	Experimental Investigation and Modeling of the Transformation of Illicit Drugs in a Pilot-Scale Sewer System. Environmental Science & Technology, 2019, 53, 4556-4565.	4.6	25
146	A comparative proteomic analysis of Desulfovibrio vulgaris Hildenborough in response to the antimicrobial agent free nitrous acid. Science of the Total Environment, 2019, 672, 625-633.	3.9	13
147	Cometabolic biodegradation of cephalexin by enriched nitrifying sludge: Process characteristics, gene expression and product biotoxicity. Science of the Total Environment, 2019, 672, 275-282.	3.9	38
148	Development of microbially influenced corrosion on carbon steel in a simulated water injection system. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 1826-1836.	0.8	7
149	Perchlorate bio-reduction in a methane-based membrane biofilm reactor in the presence and absence of oxygen. Water Research, 2019, 157, 572-578.	5.3	34
150	Evaluating the in-sewer stability of three potential population biomarkers for application in wastewater-based epidemiology. Science of the Total Environment, 2019, 671, 248-253.	3.9	32
151	The development and application of improved solids modelling to enable resilient urban sewer networks. Journal of Environmental Management, 2019, 240, 219-230.	3.8	19
152	Application of iron-crosslinked sodium alginate for efficient sulfide control and reduction of oilfield produced water. Water Research, 2019, 154, 12-20.	5.3	13
153	Corrosion of reinforcing steel in concrete sewers. Science of the Total Environment, 2019, 649, 739-748.	3.9	35
154	Self-Sustained Nitrite Accumulation at Low pH Greatly Enhances Volatile Solids Destruction and Nitrogen Removal in Aerobic Sludge Digestion. Environmental Science & Technology, 2019, 53, 1225-1234.	4.6	30
155	Integrated Project Risk Management for Residential Recycled-Water Schemes in Australia. Journal of Management in Engineering - ASCE, 2019, 35, 04018063.	2.6	10
156	Increasing capacity of an anaerobic sludge digester through FNA pre-treatment of thickened waste activated sludge. Water Research, 2019, 149, 406-413.	5.3	45
157	Real-time prediction of rain-impacted sewage flow for on-line control of chemical dosing in sewers. Water Research, 2019, 149, 311-321.	5.3	28
158	Systematic evaluation of biomarker stability in pilot scale sewer pipes. Water Research, 2019, 151, 447-455.	5.3	43
159	Growth kinetics of Candidatus â€~Methanoperedens nitroreducens' enriched in a laboratory reactor. Science of the Total Environment, 2019, 659, 442-450.	3.9	48
160	Overcoming Nitrite Oxidizing Bacteria Adaptation through Alternating Sludge Treatment with Free Nitrous Acid and Free Ammonia. Environmental Science & Technology, 2019, 53, 1937-1946.	4.6	152
161	Distinct microbially induced concrete corrosion at the tidal region of reinforced concrete sewers. Water Research, 2019, 150, 392-402.	5.3	43
162	Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera. ISME Journal, 2019, 13, 509-522.	4.4	245

#	Article	IF	CITATIONS
163	Characteristics of liquid flow in a countercurrent rotating bed. Chemical Engineering and Processing: Process Intensification, 2019, 136, 72-81.	1.8	11
164	Developing and Validating a Model to Assess Sewer Sediment Issues from Changing Wastewater Inflows and Concentration. Green Energy and Technology, 2019, , 836-841.	0.4	0
165	Sulfur Capacity of Sodium Phosphate Buffer Solution. Journal of Chemical Engineering of Japan, 2019, 52, 204-209.	0.3	0
166	Greenhouse gas emissions from integrated urban drainage systems: Where do we stand?. Journal of Hydrology, 2018, 559, 307-314.	2.3	31
167	A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME Journal, 2018, 12, 1929-1939.	4.4	266
168	Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria <i>Nitrosomonas</i> to the Biocide Free Nitrous Acid. Environmental Science & Technology, 2018, 52, 5386-5397.	4.6	52
169	Modeling of Pharmaceutical Biotransformation by Enriched Nitrifying Culture under Different Metabolic Conditions. Environmental Science & Technology, 2018, 52, 2835-2843.	4.6	21
170	Free ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Research, 2018, 133, 272-281.	5.3	163
171	Improved sulfide mitigation in sewers through on-line control of ferrous salt dosing. Water Research, 2018, 135, 302-310.	5.3	35
172	Quantifying rainfall-derived inflow and infiltration in sanitary sewer systems based on conductivity monitoring. Journal of Hydrology, 2018, 558, 174-183.	2.3	35
173	Estimating rainfall-induced inflow and infiltration in a sanitary sewer system based on water quality modelling: which parameter to use?. Environmental Science: Water Research and Technology, 2018, 4, 385-393.	1.2	10
174	Methane-supported nitrate removal from groundwater in a membrane biofilm reactor. Water Research, 2018, 132, 71-78.	5.3	77
175	Stability of Illicit Drugs as Biomarkers in Sewers: From Lab to Reality. Environmental Science & Technology, 2018, 52, 1561-1570.	4.6	50
176	Achieving high-level nitrogen removal in mainstream by coupling anammox with denitrifying anaerobic methane oxidation in a membrane biofilm reactor. Water Research, 2018, 131, 196-204.	5.3	146
177	Stability of alcohol and tobacco consumption biomarkers in a real rising main sewer. Water Research, 2018, 138, 19-26.	5.3	64
178	Microbial Selenate Reduction Driven by a Denitrifying Anaerobic Methane Oxidation Biofilm. Environmental Science & Technology, 2018, 52, 4006-4012.	4.6	81
179	Modelling the long-term effect of wastewater compositions on maximum sulfide and methane production rates of sewer biofilm. Water Research, 2018, 129, 58-65.	5.3	47
180	Silver nanoparticles stimulate the proliferation of sulfate reducing bacterium Desulfovibrio vulgaris. Water Research, 2018, 129, 163-171.	5.3	29

#	Article	IF	CITATIONS
181	Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera. Environment International, 2018, 121, 1217-1226.	4.8	182
182	High-Rate Production of Short-Chain Fatty Acids from Methane in a Mixed-Culture Membrane Biofilm Reactor. Environmental Science and Technology Letters, 2018, 5, 662-667.	3.9	32
183	A comprehensive laboratory assessment of the effects of sewer-dosed iron salts on wastewater treatment processes. Water Research, 2018, 146, 109-117.	5.3	56
184	Effect of methane partial pressure on the performance of a membrane biofilm reactor coupling methane-dependent denitrification and anammox. Science of the Total Environment, 2018, 639, 278-285.	3.9	50
185	Different clusters of Candidatus â€~Methanoperedens nitroreducens'-like archaea as revealed by high-throughput sequencing with new primers. Scientific Reports, 2018, 8, 7695.	1.6	14
186	Effects of free nitrous acid treatment conditions on the nitrite pathway performance in mainstream wastewater treatment. Science of the Total Environment, 2018, 644, 360-370.	3.9	56
187	Predictions of the Influent and Operational Conditions for Partial Nitritation with a Model Incorporating pH Dynamics. Environmental Science & Technology, 2018, 52, 6457-6465.	4.6	34
188	Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via ROS-mediated mutagenesis. Environment International, 2018, 120, 421-430.	4.8	112
189	Free nitrous acid promotes hydrogen production from dark fermentation of waste activated sludge. Water Research, 2018, 145, 113-124.	5.3	137
190	Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation. Environment International, 2018, 118, 257-265.	4.8	131
191	Nitrite accumulation inside sludge flocs significantly influencing nitrous oxide production by ammonium-oxidizing bacteria. Water Research, 2018, 143, 99-108.	5.3	32
192	Decoupling Livestock from Land Use through Industrial Feed Production Pathways. Environmental Science & Technology, 2018, 52, 7351-7359.	4.6	124
193	Free nitrous acid pre-treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion. Water Research, 2018, 130, 13-19.	5.3	127
194	Model-based Management and Control of the Bioreactions in a Collection System. Proceedings of the Water Environment Federation, 2018, 2018, 2700-2708.	0.0	1
195	Effect of free nitrous acid pre-treatment on primary sludge at low exposure times. Bioresource Technology, 2017, 228, 272-278.	4.8	26
196	Comparison of different two-pathway models for describing the combined effect of DO and nitrite on the nitrous oxide production by ammonia-oxidizing bacteria. Water Science and Technology, 2017, 75, 491-500.	1.2	5
197	Technologies for reducing sludge production in wastewater treatment plants: State of the art. Science of the Total Environment, 2017, 587-588, 510-521.	3.9	111
198	Impact of in-Sewer Degradation of Pharmaceutical and Personal Care Products (PPCPs) Population Markers on a Population Model. Environmental Science & Technology, 2017, 51, 3816-3823.	4.6	96

#	Article	IF	CITATIONS
199	Enhancing sludge biodegradability through free nitrous acid pre-treatment at low exposure time. Chemical Engineering Journal, 2017, 321, 139-145.	6.6	32
200	Microbial community structure and biodiversity of size-fractionated granules in a partial nitritation–anammox process. FEMS Microbiology Ecology, 2017, 93, .	1.3	41
201	Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers. Water Research, 2017, 118, 114-120.	5.3	45
202	A greenhouse gas source of surprising significance: anthropogenic CO2 emissions from use of methanol in sewage treatment. Water Science and Technology, 2017, 75, 1997-2012.	1.2	4
203	Copper Oxide Nanoparticles Induce Lysogenic Bacteriophage and Metal-Resistance Genes in <i>Pseudomonas aeruginosa</i> PAO1. ACS Applied Materials & Interfaces, 2017, 9, 22298-22307.	4.0	72
204	Simultaneous use of caustic and oxygen for efficient sulfide control in sewers. Science of the Total Environment, 2017, 601-602, 776-783.	3.9	23
205	Quantifying nitrous oxide production pathways in wastewater treatment systems using isotope technology – A critical review. Water Research, 2017, 122, 96-113.	5.3	76
206	Tidal variability in methane and nitrous oxide emissions along a subtropical estuarine gradient. Estuarine, Coastal and Shelf Science, 2017, 192, 159-169.	0.9	14
207	Expert opinion on risks to the long-term viability of residential recycled water schemes: An Australian study. Water Research, 2017, 120, 133-145.	5.3	12
208	Nitrite production from urine for sulfide control in sewers. Water Research, 2017, 122, 447-454.	5.3	33
209	Unraveling microbial structure and diversity of activated sludge in a full-scale simultaneous nitrogen and phosphorus removal plant using metagenomic sequencing. Enzyme and Microbial Technology, 2017, 102, 16-25.	1.6	100
210	Biodegradation of atenolol by an enriched nitrifying sludge: Products and pathways. Chemical Engineering Journal, 2017, 312, 351-359.	6.6	55
211	Biotransformation of acyclovir by an enriched nitrifying culture. Chemosphere, 2017, 170, 25-32.	4.2	27
212	Complete Nitrogen Removal from Synthetic Anaerobic Sludge Digestion Liquor through Integrating Anammox and Denitrifying Anaerobic Methane Oxidation in a Membrane Biofilm Reactor. Environmental Science & Technology, 2017, 51, 819-827.	4.6	122
213	Data on metagenomic profiles of activated sludge from a full-scale wastewater treatment plant. Data in Brief, 2017, 15, 833-839.	0.5	13
214	Electrochemical Production of Magnetite Nanoparticles for Sulfide Control in Sewers. Environmental Science & Technology, 2017, 51, 12229-12234.	4.6	12
215	Odor emissions from domestic wastewater: A review. Critical Reviews in Environmental Science and Technology, 2017, 47, 1581-1611.	6.6	83
216	Inactivation and adaptation of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria when exposed to free nitrous acid. Bioresource Technology, 2017, 245, 1266-1270.	4.8	92

#	Article	IF	CITATIONS
217	Exploring alternatives to reduce economical costs associated with FNA pre-treatment of waste activated sludge. Bioresource Technology, 2017, 243, 315-318.	4.8	9
218	Achieving Stable Mainstream Nitrogen Removal via the Nitrite Pathway by Sludge Treatment Using Free Ammonia. Environmental Science & Technology, 2017, 51, 9800-9807.	4.6	186
219	Aerobic condition enhances bacteriostatic effects of silver nanoparticles in aquatic environment: an antimicrobial study on Pseudomonas aeruginosa. Scientific Reports, 2017, 7, 7398.	1.6	23
220	Biological Bromate Reduction Driven by Methane in a Membrane Biofilm Reactor. Environmental Science and Technology Letters, 2017, 4, 562-566.	3.9	51
221	Impact of Ammonium Availability on Atenolol Biotransformation during Nitrification. ACS Sustainable Chemistry and Engineering, 2017, 5, 7137-7144.	3.2	18
222	Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Research, 2017, 123, 468-478.	5.3	604
223	Achieving Mainstream Nitrogen Removal through Coupling Anammox with Denitratation. Environmental Science & Technology, 2017, 51, 8405-8413.	4.6	222
224	Optical sorting and cultivation of denitrifying anaerobic methane oxidation archaea. Biomedical Optics Express, 2017, 8, 934.	1.5	18
225	Wastewater GHG Accounting Protocols as Compared to the State of GHG Science. Water Environment Research, 2016, 88, 704-714.	1.3	5
226	Metagenomic analysis of anammox communities in three different microbial aggregates. Environmental Microbiology, 2016, 18, 2979-2993.	1.8	133
227	Antimicrobial Effects of Free Nitrous Acid on Desulfovibrio vulgaris: Implications for Sulfide-Induced Corrosion of Concrete. Applied and Environmental Microbiology, 2016, 82, 5563-5575.	1.4	30
228	Why do residential recycled water schemes fail? A comprehensive review of risk factors and impact on objectives. Water Research, 2016, 102, 271-281.	5.3	39
229	Achieving complete nitrogen removal by coupling nitritationâ€anammox and methaneâ€dependent denitrification: A modelâ€based study. Biotechnology and Bioengineering, 2016, 113, 1035-1045.	1.7	34
230	Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor. Scientific Reports, 2016, 6, 25336.	1.6	7
231	Direct anodic hydrochloric acid and cathodic caustic production during water electrolysis. Scientific Reports, 2016, 6, 20494.	1.6	15
232	Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor. Scientific Reports, 2016, 6, 25114.	1.6	10
233	Unravelling the spatial variation of nitrous oxide emissions from a step-feed plug-flow full scale wastewater treatment plant. Scientific Reports, 2016, 6, 20792.	1.6	15
234	Nitrite addition to acidified sludge significantly improves digestibility, toxic metal removal, dewaterability and pathogen reduction. Scientific Reports, 2016, 6, 39795.	1.6	5

#	Article	IF	CITATIONS
235	Enhancing post anaerobic digestion of full-scale anaerobically digested sludge using free nitrous acid treatment. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 713-717.	1.4	9
236	Methane dynamics in subtropical freshwater reservoirs and the mediating microbial communities. Biogeochemistry, 2016, 128, 233-255.	1.7	19
237	Determining Multiple Responses of <i>Pseudomonas aeruginosa</i> PAO1 to an Antimicrobial Agent, Free Nitrous Acid. Environmental Science & Technology, 2016, 50, 5305-5312.	4.6	48
238	Flow characteristics in free impinging jet reactor by particle image velocimetry (PIV) investigation. Fluid Dynamics Research, 2016, 48, 045505.	0.6	10
239	Achieving Stable Nitritation for Mainstream Deammonification by Combining Free Nitrous Acid-Based Sludge Treatment and Oxygen Limitation. Scientific Reports, 2016, 6, 25547.	1.6	104
240	Online Control of Magnesium Hydroxide Dosing for Sulfide Mitigation in Sewers: Algorithm Development, Simulation Analysis, and Field Validation. Journal of Environmental Engineering, ASCE, 2016, 142, .	0.7	14
241	Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes. Science of the Total Environment, 2016, 566-567, 796-805.	3.9	74
242	Event-driven model predictive control of sewage pumping stations for sulfide mitigation in sewer networks. Water Research, 2016, 98, 376-383.	5.3	32
243	Modeling N2O production by ammonia oxidizing bacteria at varying inorganic carbon concentrations by coupling the catabolic and anabolic processes. Chemical Engineering Science, 2016, 144, 386-394.	1.9	9
244	Reducing N ₂ O Emission from a Domestic-Strength Nitrifying Culture by Free Nitrous Acid-Based Sludge Treatment. Environmental Science & Technology, 2016, 50, 7425-7433.	4.6	51
245	Predicting concrete corrosion of sewers using artificial neural network. Water Research, 2016, 92, 52-60.	5.3	106
246	Sludge-Drying Lagoons: a Potential Significant Methane Source in Wastewater Treatment Plants. Environmental Science & Technology, 2016, 50, 1368-1375.	4.6	7
247	Towards energy positive wastewater treatment by sludge treatment using free nitrous acid. Chemosphere, 2016, 144, 1869-1873.	4.2	23
248	Sources and sinks of methane and nitrous oxide in the subtropical Brisbane River estuary, South East Queensland, Australia. Estuarine, Coastal and Shelf Science, 2016, 168, 10-21.	0.9	22
249	Enhancing post aerobic digestion of full-scale anaerobically digested sludge using free nitrous acid pretreatment. Chemosphere, 2016, 150, 152-158.	4.2	14
250	Evaluation of different nitrous oxide production models with four continuous long-term wastewater treatment process data series. Bioprocess and Biosystems Engineering, 2016, 39, 493-510.	1.7	39
251	Effect of free nitrous acid pre-treatment on primary sludge biodegradability and its implications. Chemical Engineering Journal, 2016, 290, 31-36.	6.6	34
252	Sulfide and methane production in sewer sediments: Field survey and model evaluation. Water Research, 2016, 89, 142-150.	5.3	51

#	Article	IF	CITATIONS
253	Enhanced volatile fatty acids production of waste activated sludge under salinity conditions: Performance and mechanisms. Journal of Bioscience and Bioengineering, 2016, 121, 293-298.	1.1	39
254	CHAPTER 16. Denitrification Processes for Wastewater Treatment. 2-Oxoglutarate-Dependent Oxygenases, 2016, , 368-418.	0.8	10
255	Wastewater Methanol Use: A Surprisingly Significant Scope-1 GHG Emission Source. Proceedings of the Water Environment Federation, 2016, 2016, 5860-5864.	0.0	0
256	Evaluating the Role of Microbial Internal Storage Turnover on Nitrous Oxide Accumulation During Denitrification. Scientific Reports, 2015, 5, 15138.	1.6	20
257	Suppressing Nitrite-oxidizing Bacteria Growth to Achieve Nitrogen Removal from Domestic Wastewater via Anammox Using Intermittent Aeration with Low Dissolved Oxygen. Scientific Reports, 2015, 5, 13048.	1.6	107
258	Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown. Scientific Reports, 2015, 5, 16631.	1.6	31
259	Sampling considerations and assessment of <scp>E</scp> xetainer usage for measuring dissolved and gaseous methane and nitrous oxide in aquatic systems. Limnology and Oceanography: Methods, 2015, 13, 375-390.	1.0	27
260	Commentary: "Large-scale psychological differences within China explained by rice vs. wheat agriculture― Frontiers in Psychology, 2015, 6, 489.	1.1	4
261	Role of indigenous iron in improving sludge dewaterability through peroxidation. Scientific Reports, 2015, 5, 7516.	1.6	8
262	N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge linearly depends on inorganic carbon concentration. Water Research, 2015, 74, 58-66.	5.3	37
263	Role of extracellular polymeric substances in improvement of sludge dewaterability through peroxidation. Bioresource Technology, 2015, 192, 817-820.	4.8	65
264	The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge. Water Research, 2015, 73, 29-36.	5.3	147
265	Feasibility of sulfide control in sewers by reuse ofÂiron rich drinking water treatment sludge. Water Research, 2015, 71, 150-159.	5.3	77
266	Evaluating two concepts for the modelling of intermediates accumulation during biological denitrification in wastewater treatment. Water Research, 2015, 71, 21-31.	5.3	69
267	Impact of reduced water consumption on sulfide and methane production in rising main sewers. Journal of Environmental Management, 2015, 154, 307-315.	3.8	19
268	The concentration-determined and population-specific antimicrobial effects of free nitrous acid on Pseudomonas aeruginosa PAO1. Applied Microbiology and Biotechnology, 2015, 99, 2305-2312.	1.7	29
269	A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (DAMO) and anammox processes in anoxic environments. Scientific Reports, 2015, 5, 8706.	1.6	71
270	Enhanced triacylglyceride extraction from microalgae using free nitrous acid pre-treatment. Applied Energy, 2015, 154, 183-189.	5.1	9

#	Article	IF	CITATIONS
271	Selection of mathematical models for N2O production by ammonia oxidizing bacteria under varying dissolved oxygen and nitrite concentrations. Chemical Engineering Journal, 2015, 281, 661-668.	6.6	27
272	Enhancing Toxic Metal Removal from Acidified Sludge with Nitrite Addition. Environmental Science & Technology, 2015, 49, 6257-6263.	4.6	35
273	Free nitrous acid breaks down extracellular polymeric substances in waste activated sludge. RSC Advances, 2015, 5, 43312-43318.	1.7	51
274	Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment. Water Research, 2015, 74, 155-165.	5.3	59
275	Methane emission from sewers. Science of the Total Environment, 2015, 524-525, 40-51.	3.9	66
276	Enhancing aerobic digestion of full-scale waste activated sludge using free nitrous acid pre-treatment. RSC Advances, 2015, 5, 19128-19134.	1.7	14
277	Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microbial Cell Factories, 2015, 14, 33.	1.9	323
278	A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate. Bioresource Technology, 2015, 185, 416-420.	4.8	114
279	Corrosion and odor management in sewer systems. Current Opinion in Biotechnology, 2015, 33, 192-197.	3.3	119
280	Biofouling and scaling control of reverse osmosis membrane using one-step cleaning-potential of acidified nitrite solution as an agent. Journal of Membrane Science, 2015, 495, 276-283.	4.1	62
281	A new approach to simultaneous ammonium and dissolved methane removal from anaerobic digestion liquor: A model-based investigation of feasibility. Water Research, 2015, 85, 295-303.	5.3	68
282	Scaling-Free Electrochemical Production of Caustic and Oxygen for Sulfide Control in Sewers. Environmental Science & Technology, 2015, 49, 11395-11402.	4.6	9
283	Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes. Water Research, 2015, 87, 336-346.	5.3	106
284	Full-Scale Modeling Explaining Large Spatial Variations of Nitrous Oxide Fluxes in a Step-Feed Plug-Flow Wastewater Treatment Reactor. Environmental Science & Technology, 2015, 49, 9176-9184.	4.6	49
285	Nitrate reduction by denitrifying anaerobic methane oxidizing microorganisms can reach a practically useful rate. Water Research, 2015, 87, 211-217.	5.3	114
286	Methane and nitrous oxide emissions from a subtropical coastal embayment (Moreton Bay, Australia). Journal of Environmental Sciences, 2015, 29, 82-96.	3.2	14
287	A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid. Water Research, 2015, 70, 279-287.	5.3	51
288	Sulfide and methane production in sewer sediments. Water Research, 2015, 70, 350-359.	5.3	78

#	Article	IF	CITATIONS
289	Electrochemical Abatement of Hydrogen Sulfide from Waste Streams. Critical Reviews in Environmental Science and Technology, 2015, 45, 1555-1578.	6.6	75
290	Degradation of methanethiol in anaerobic sewers and its correlation with methanogenic activities. Water Research, 2015, 69, 80-89.	5.3	31
291	Producing free nitrous acid – A green and renewable biocidal agent – From anaerobic digester liquor. Chemical Engineering Journal, 2015, 259, 62-69.	6.6	82
292	Online dissolved methane and total dissolved sulfide measurement in sewers. Water Research, 2015, 68, 109-118.	5.3	39
293	South Australia Water Corporation's Pro-active Corrosion and Odour Management Strategy Development. Proceedings of the Water Environment Federation, 2015, 2015, 919-935.	0.0	Ο
294	Regeneration of SO ₂ -Loaded Sodium Phosphate Solution in Rotating Packed Bed. Journal of Chemical Engineering of Japan, 2014, 47, 777-781.	0.3	2
295	Mechanism of Flue Gas Desulfurization with Sodium Phosphate Solution. Chemical Engineering and Technology, 2014, 37, 2185-2189.	0.9	3
296	Real-Time Multistep Prediction of Sewer Flow for Online Chemical Dosing Control. Journal of Environmental Engineering, ASCE, 2014, 140, .	0.7	23
297	Assessing the Spatial and Temporal Variability of Diffusive Methane and Nitrous Oxide Emissions from Subtropical Freshwater Reservoirs. Environmental Science & Technology, 2014, 48, 14499-14507.	4.6	73
298	Modeling the pH effect on sulfidogenesis inÂanaerobic sewer biofilm. Water Research, 2014, 49, 175-185.	5.3	58
299	Inactivation kinetics of anaerobic wastewater biofilms by free nitrous acid. Applied Microbiology and Biotechnology, 2014, 98, 1367-1376.	1.7	13
300	An efficient method for measuring dissolved VOSCs in wastewater using GC–SCD with static headspace technique. Water Research, 2014, 52, 208-217.	5.3	30
301	Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway. Water Research, 2014, 55, 245-255.	5.3	205
302	A novel methodology to quantify nitrous oxide emissions from full-scale wastewater treatment systems with surface aerators. Water Research, 2014, 48, 257-268.	5.3	47
303	High ontent, Wellâ€Dispersed γâ€Fe ₂ O ₃ Nanoparticles Encapsulated in Macroporous Silica with Superior Arsenic Removal Performance. Advanced Functional Materials, 2014, 24, 1354-1363.	7.8	118
304	The role of iron in sulfide induced corrosion ofÂsewer concrete. Water Research, 2014, 49, 166-174.	5.3	92
305	Impact of oxygen injection on CH4 and N2O emissions from rising main sewers. Journal of Environmental Management, 2014, 144, 279-285.	3.8	22
306	The effect of dissolved oxygen on N 2 O production by ammonia-oxidizing bacteria in an enriched nitrifying sludge. Water Research, 2014, 66, 12-21.	5.3	123

#	Article	IF	CITATIONS
307	A review on sludge conditioning by sludge pre-treatment with a focus on advanced oxidation. RSC Advances, 2014, 4, 50644-50652.	1.7	83
308	Modeling of Nitrous Oxide Production by Autotrophic Ammonia-Oxidizing Bacteria with Multiple Production Pathways. Environmental Science & Technology, 2014, 48, 3916-3924.	4.6	110
309	Modeling nitrogen removal with partial nitritation and anammox in one floc-based sequencing batch reactor. Water Research, 2014, 67, 321-329.	5.3	62
310	Stratified Microbial Structure and Activity in Sulfide- and Methane-Producing Anaerobic Sewer Biofilms. Applied and Environmental Microbiology, 2014, 80, 7042-7052.	1.4	95
311	Filamentous and non-filamentous bulking of activated sludge encountered under nutrients limitation or deficiency conditions. Chemical Engineering Journal, 2014, 255, 453-461.	6.6	72
312	Enhancing methane production from waste activated sludge using combined free nitrous acid and heat pre-treatment. Water Research, 2014, 63, 71-80.	5.3	139
313	The effect of poly-β-hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system. Bioresource Technology, 2014, 170, 175-182.	4.8	25
314	Reducing sewer corrosion through integrated urban water management. Science, 2014, 345, 812-814.	6.0	194
315	Improving dewaterability of waste activated sludge by combined conditioning with zero-valent iron and hydrogen peroxide. Bioresource Technology, 2014, 174, 103-107.	4.8	44
316	Modeling of Simultaneous Anaerobic Methane and Ammonium Oxidation in a Membrane Biofilm Reactor. Environmental Science & Technology, 2014, 48, 9540-9547.	4.6	80
317	Heterotrophic denitrification plays an important role in N2O production from nitritation reactors treating anaerobic sludge digestion liquor. Water Research, 2014, 62, 202-210.	5.3	62
318	Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems. Water Research, 2014, 48, 569-578.	5.3	74
319	Degradability of creatinine under sewer conditions affects its potential to be used as biomarker in sewage epidemiology. Water Research, 2014, 55, 272-279.	5.3	42
320	Methane and nitrous oxide emissions from a subtropical estuary (the Brisbane River estuary,) Tj ETQq0 0 0 rgBT	Overlock	10 ₆₅ 50 222
321	Effects of sewer conditions on the degradation of selected illicit drug residues in wastewater. Water Research, 2014, 48, 538-547.	5.3	115
322	On-line monitoring of methane in sewer air. Scientific Reports, 2014, 4, 6637.	1.6	21
323	Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 2013, 500, 567-570.	13.7	1,029

#	Article	IF	CITATIONS
325	Confinement of Chemisorbed Phosphates in a Controlled Nanospace with Threeâ€Dimensional Mesostructures. Chemistry - A European Journal, 2013, 19, 5578-5585.	1.7	16
326	Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Research, 2013, 47, 3273-3281.	5.3	200
327	In-situ caustic generation from sewage: The impact of caustic strength and sewage composition. Water Research, 2013, 47, 5828-5835.	5.3	18
328	Modeling Electron Competition among Nitrogen Oxides Reduction and N ₂ O Accumulation in Denitrification. Environmental Science & Technology, 2013, 47, 11083-11091.	4.6	119
329	Fossil organic carbon in wastewater and its fate in treatment plants. Water Research, 2013, 47, 5270-5281.	5.3	96
330	Free Nitrous Acid (FNA)-Based Pretreatment Enhances Methane Production from Waste Activated Sludge. Environmental Science & Technology, 2013, 47, 11897-11904.	4.6	234
331	The effect of free nitrous acid on key anaerobic processes in enhanced biological phosphorus removal systems. Bioresource Technology, 2013, 130, 382-389.	4.8	21
332	Nitrogen Removal from Wastewater by Coupling Anammox and Methane-Dependent Denitrification in a Membrane Biofilm Reactor. Environmental Science & Technology, 2013, 47, 11577-11583.	4.6	214
333	A free nitrous acid (FNA)-based technology for reducing sludge production. Water Research, 2013, 47, 3663-3672.	5.3	74
334	Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor. Journal of Membrane Science, 2013, 446, 332-340.	4.1	51
335	Laboratory assessment of bioproducts for sulphide and methane control in sewer systems. Science of the Total Environment, 2013, 443, 429-437.	3.9	13
336	Effects of nitrate dosing on methanogenic activity in a sulfide-producing sewer biofilm reactor. Water Research, 2013, 47, 1783-1792.	5.3	77
337	Hydrolysis, acidification and dewaterability of waste activated sludge under alkaline conditions: Combined effects of NaOH and Ca(OH)2. Bioresource Technology, 2013, 136, 237-243.	4.8	85
338	pH dynamics in sewers and its modeling. Water Research, 2013, 47, 6086-6096.	5.3	59
339	A model-based assessment of nitric oxide and nitrous oxide production in membrane-aerated autotrophic nitrogen removal biofilm systems. Journal of Membrane Science, 2013, 428, 163-171.	4.1	58
340	Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide. Journal of Hazardous Materials, 2013, 250-251, 91-98.	6.5	58
341	Mathematical Modeling of Nitrous Oxide (N ₂ O) Emissions from Full-Scale Wastewater Treatment Plants. Environmental Science & Technology, 2013, 47, 7795-7803.	4.6	102
342	The Confounding Effect of Nitrite on N ₂ O Production by an Enriched Ammonia-Oxidizing Culture. Environmental Science & Technology, 2013, 47, 7186-7194.	4.6	77

#	Article	IF	CITATIONS
343	Effect of H ₂ S on N ₂ O Reduction and Accumulation during Denitrification by Methanol Utilizing Denitrifiers. Environmental Science & Technology, 2013, 47, 130710143655002.	4.6	28
344	Breakage and growth towards a stable aerobic granule size during the treatment of wastewater. Water Research, 2013, 47, 5338-5349.	5.3	80
345	Evaluating four mathematical models for nitrous oxide production by autotrophic ammoniaâ€oxidizing bacteria. Biotechnology and Bioengineering, 2013, 110, 153-163.	1.7	85
346	Controlling chemical dosing for sulfide mitigation in sewer networks using a hybrid automata control strategy. Water Science and Technology, 2013, 68, 2584-2590.	1.2	14
347	Impact of Iron Salt Dosage to Sewers on Downstream Anaerobic Sludge Digesters: Sulfide Control and Methane Production. Journal of Environmental Engineering, ASCE, 2013, 139, 594-601.	0.7	93
348	Evaluating a strategy for maintaining nitrifier activity during long-term starvation in a moving bed biofilm reactor (MBBR) treating reverse osmosis concentrate. Water Science and Technology, 2012, 66, 837-842.	1.2	4
349	Dynamic Response of Sulfate-Reducing and Methanogenic Activities of Anaerobic Sewer Biofilms to Ferric Dosing. Journal of Environmental Engineering, ASCE, 2012, 138, 510-517.	0.7	12
350	Nitrous oxide emissions from wastewater treatment processes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1265-1277.	1.8	358
351	Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers. Water Research, 2012, 46, 4832-4840.	5.3	169
352	Aerobic sludge granulation: A tale of two polysaccharides?. Water Research, 2012, 46, 4803-4813.	5.3	177
353	Control filamentous bulking caused by chlorine-resistant Type 021N bacteria through adding a biocide CTAB. Water Research, 2012, 46, 6531-6542.	5.3	43
354	Rationally designed functional macroporous materials as new adsorbents for efficient phosphorus removal. Journal of Materials Chemistry, 2012, 22, 9983.	6.7	90
355	Long-term field test of an electrochemical method for sulfide removal from sewage. Water Research, 2012, 46, 3085-3093.	5.3	24
356	N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate. Water Research, 2012, 46, 3409-3419.	5.3	190
357	Response of poly-phosphate accumulating organisms to free nitrous acid inhibition under anoxic and aerobic conditions. Bioresource Technology, 2012, 116, 340-347.	4.8	38
358	Phosphorus recovery from wastewater through microbial processes. Current Opinion in Biotechnology, 2012, 23, 878-883.	3.3	360
359	Molecular Dynamics Unlocks Atomic Level Self-Assembly of the Exopolysaccharide Matrix of Water-Treatment Granular Biofilms. Biomacromolecules, 2012, 13, 1965-1972.	2.6	18
360	Improving secondary sludge biodegradability using free nitrous acid treatment. Bioresource Technology, 2012, 116, 92-98.	4.8	93

#	Article	IF	CITATIONS
361	Review on the Microbiological and Biochemistrial Characters of Enhanced Biological Phosphorus Removal System*. Ying Yong Yu Huan Jing Sheng Wu Xue Bao = Chinese Journal of Applied and Environmental Biology, 2012, 17, 427-434.	0.1	2
362	Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities. Water Research, 2011, 45, 2281-2289.	5.3	66
363	The strong biocidal effect of free nitrous acid on anaerobic sewer biofilms. Water Research, 2011, 45, 3735-3743.	5.3	169
364	Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules. Water Research, 2011, 45, 5075-5083.	5.3	135
365	Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes. Water Research, 2011, 45, 5381-5388.	5.3	93
366	The effect of pH on N2O production under aerobic conditions in a partial nitritation system. Water Research, 2011, 45, 5934-5944.	5.3	152
367	Optimization of intermittent, simultaneous dosage of nitrite and hydrochloric acid to control sulfide and methane productions in sewers. Water Research, 2011, 45, 6163-6172.	5.3	72
368	Chemical dosing for sulfide control in Australia: An industry survey. Water Research, 2011, 45, 6564-6574.	5.3	156
369	Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Environmental Microbiology Reports, 2011, 3, 315-319.	1.0	103
370	Quantifying Methane Evolution from Sewers: Results from WERF/DeKalb Phase 2 — Continuous Monitoring. Proceedings of the Water Environment Federation, 2011, 2011, 3851-3858.	0.0	4
371	Electrochemical caustic generation from sewage. Electrochemistry Communications, 2011, 13, 1202-1204.	2.3	20
372	Preparation and phenol-recognizing ability of a poly(methacrylic acid) molecular imprint on the surface of a silica gel. Mikrochimica Acta, 2011, 172, 89-94.	2.5	14
373	Dynamic microbial response of sulfidogenic wastewater biofilm to nitrate. Applied Microbiology and Biotechnology, 2011, 91, 1647-1657.	1.7	36
374	Selectively inducing the synthesis of a key structural exopolysaccharide in aerobic granules by enriching for Candidatus "Competibacter phosphatis― Applied Microbiology and Biotechnology, 2011, 92, 1297-1305.	1.7	62
375	Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. Bioresource Technology, 2011, 102, 334-341.	4.8	160
376	The Effect of Free Nitrous Acid on the Anaerobic Metabolism of Polyphosphate Accumulating Organisms (PAOs) and Glycogen Accumulating Organisms (GAOs). Proceedings of the Water Environment Federation, 2011, 2011, 18-30.	0.0	1
377	SCORe-CT: a new method for testing effectiveness of sulfide-control chemicals used in sewer systems. Water Science and Technology, 2011, 64, 2381-2388.	1.2	18
378	A laboratory assessment of the impact of brewery wastewater discharge on sulfide and methane production in a sewer. Water Science and Technology, 2011, 64, 1614-1619.	1.2	10

#	Article	IF	CITATIONS
379	Free nitrous acid (FNA) inhibition on denitrifying poly-phosphate accumulating organisms (DPAOs). Applied Microbiology and Biotechnology, 2010, 88, 359-369.	1.7	76
380	Ferrous Salt Demand for Sulfide Control in Rising Main Sewers: Tests on a Laboratory-Scale Sewer System. Journal of Environmental Engineering, ASCE, 2010, 136, 1180-1187.	0.7	20
381	Development and optimization of a sequencing batch reactor for nitrogen and phosphorus removal from abattoir wastewater to meet irrigation standards. Water Science and Technology, 2010, 61, 2105-2112.	1.2	13
382	The source of reducing power in the anaerobic metabolism of polyphosphate accumulating organisms (PAOs) – a mini-review. Water Science and Technology, 2010, 61, 1653-1662.	1.2	42
383	Simultaneous online measurement of sulfide and nitrate in sewers for nitrate dosage optimisation. Water Science and Technology, 2010, 61, 651-658.	1.2	18
384	Structural Determination of a Key Exopolysaccharide in Mixed Culture Aerobic Sludge Granules Using NMR Spectroscopy. Environmental Science & Technology, 2010, 44, 8964-8970.	4.6	59
385	Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Research, 2010, 44, 831-844.	5.3	352
386	Electrochemical sulfide removal and recovery from paper mill anaerobic treatment effluent. Water Research, 2010, 44, 2563-2571.	5.3	80
387	The effect of free nitrous acid on the anabolic and catabolic processes of glycogen accumulating organisms. Water Research, 2010, 44, 2901-2909.	5.3	59
388	Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Research, 2010, 44, 2970-2980.	5.3	341
389	Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems. Water Research, 2010, 44, 4241-4251.	5.3	99
390	Free nitrous acid inhibition on the aerobic metabolism of poly-phosphate accumulating organisms. Water Research, 2010, 44, 6063-6072.	5.3	109
391	Iron salts dosage for sulfide control in sewers induces chemical phosphorus removal during wastewater treatment. Water Research, 2010, 44, 3467-3475.	5.3	126
392	Purification and Conformational Analysis of a Key Exopolysaccharide Component of Mixed Culture Aerobic Sludge Granules. Environmental Science & Technology, 2010, 44, 4729-4734.	4.6	78
393	Dissolved methane in rising main sewer systems: field measurements and simple model development for estimating greenhouse gas emissions. Water Science and Technology, 2009, 60, 2963-2971.	1.2	85
394	Understanding the properties of aerobic sludge granules as hydrogels. Biotechnology and Bioengineering, 2009, 102, 1483-1493.	1.7	102
395	A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones. Biodegradation, 2009, 20, 221-234.	1.5	38
396	A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater. Biodegradation, 2009, 20, 339-350.	1.5	39

#	Article	IF	CITATIONS
397	Anoxic phosphorus removal in a pilot scale anaerobic-anoxic oxidation ditch process. Frontiers of Environmental Science and Engineering in China, 2009, 3, 106-111.	0.8	6
398	Electrochemical regeneration of sulfur loaded electrodes. Electrochemistry Communications, 2009, 11, 1437-1440.	2.3	58
399	Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant. Water Research, 2009, 43, 563-572.	5.3	190
400	Modeling the PAO–GAO competition: Effects of carbon source, pH and temperature. Water Research, 2009, 43, 450-462.	5.3	309
401	Involvement of the TCA cycle in the anaerobic metabolism of polyphosphate accumulating organisms (PAOs). Water Research, 2009, 43, 1330-1340.	5.3	78
402	Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms. Water Research, 2009, 43, 2549-2557.	5.3	165
403	Development of a model for assessing methane formation in rising main sewers. Water Research, 2009, 43, 2874-2884.	5.3	107
404	Response to the comment on "Modelling the PAO-GAO competition: Effects of carbon source, pH and temperature―by Dwight Houweling etÂal Water Research, 2009, 43, 2950-2951.	5.3	3
405	Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules. Water Research, 2009, 43, 3622-3632.	5.3	41
406	Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. Water Research, 2009, 43, 4123-4132.	5.3	153
407	Impact of nitrate addition on biofilm properties and activities in rising main sewers. Water Research, 2009, 43, 4225-4237.	5.3	106
408	Sulfur transformation in rising main sewers receiving nitrate dosage. Water Research, 2009, 43, 4430-4440.	5.3	155
409	Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges. Water Research, 2009, 43, 4469-4478.	5.3	151
410	Role of Sulfur during Acetate Oxidation in Biological Anodes. Environmental Science & Technology, 2009, 43, 3839-3845.	4.6	69
411	Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environmental Microbiology Reports, 2009, 1, 377-384.	1.0	196
412	Decolorization of Azo Dyes in Bioelectrochemical Systems. Environmental Science & Technology, 2009, 43, 5137-5143.	4.6	299
413	Electron Fluxes in a Microbial Fuel Cell Performing Carbon and Nitrogen Removal. Environmental Science & Technology, 2009, 43, 5144-5149.	4.6	126
414	Variation in Biofilm Structure and Activity Along the Length of a Rising Main Sewer. Water Environment Research, 2009, 81, 800-808.	1.3	30

#	Article	IF	CITATIONS
415	Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation, 2008, 19, 303-312.	1.5	336
416	Sludge population optimisation in biological nutrient removal wastewater treatment systems through on-line process control: a re/view. Reviews in Environmental Science and Biotechnology, 2008, 7, 243-254.	3.9	29
417	The denitrification capability of cluster 1 <i>Defluviicoccus vanus</i> â€related glycogenâ€accumulating organisms. Biotechnology and Bioengineering, 2008, 99, 1329-1336.	1.7	59
418	Simultaneous nitrification, denitrification, and phosphorus removal from nutrientâ€rich industrial wastewater using granular sludge. Biotechnology and Bioengineering, 2008, 100, 529-541.	1.7	215
419	Achieving the nitrite pathway using aeration phase length control and stepâ€feed in an SBR removing nutrients from abattoir wastewater. Biotechnology and Bioengineering, 2008, 100, 1228-1236.	1.7	96
420	Microstructure of copolymers of polyhydroxyalkanoates produced by glycogen accumulating organisms with acetate as the sole carbon source. Process Biochemistry, 2008, 43, 968-977.	1.8	19
421	Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. ISME Journal, 2008, 2, 528-541.	4.4	131
422	Microbial distribution of <i>Accumulibacter</i> spp. and <i>Competibacter</i> spp. in aerobic granules from a labâ€scale biological nutrient removal system. Environmental Microbiology, 2008, 10, 354-363.	1.8	86
423	Free Nitrous Acid Inhibition on Nitrous Oxide Reduction by a Denitrifying-Enhanced Biological Phosphorus Removal Sludge. Environmental Science & Technology, 2008, 42, 8260-8265.	4.6	222
424	Sequential anode–cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Research, 2008, 42, 1387-1396.	5.3	181
425	Methane formation in sewer systems. Water Research, 2008, 42, 1421-1430.	5.3	254
426	Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. Water Research, 2008, 42, 2166-2176.	5.3	179
427	Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)?. Water Research, 2008, 42, 2361-2368.	5.3	107
428	Dynamics and dynamic modelling of H2S production in sewer systems. Water Research, 2008, 42, 2527-2538.	5.3	139
429	Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research, 2008, 42, 3013-3024.	5.3	412
430	Development of a 2-sludge, 3-stage system for nitrogen and phosphorous removal from nutrient-rich wastewater using granular sludge and biofilms. Water Research, 2008, 42, 3207-3217.	5.3	58
431	Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system. Water Research, 2008, 42, 4549-4561.	5.3	135
432	Spontaneous electrochemical removal of aqueous sulfide. Water Research, 2008, 42, 4965-4975.	5.3	120

#	Article	IF	CITATIONS
433	Characterisation of polyhydroxyalkanoate copolymers with controllable four-monomer composition. Journal of Biotechnology, 2008, 134, 137-145.	1.9	72
434	Syntrophic Processes Drive the Conversion of Glucose in Microbial Fuel Cell Anodes. Environmental Science & Technology, 2008, 42, 7937-7943.	4.6	186
435	Determination of Growth Rate and Yield of Nitrifying Bacteria by Measuring Carbon Dioxide Uptake Rate. Water Environment Research, 2007, 79, 2437-2445.	1.3	71
436	DEVELOPMENT OF A 2-SLUDGE, 3-STAGE SYSTEM FOR NITROGEN AND PHOSPHORUS REMOVAL FROM HIGH-STRENGTH WASTEWATER USING GRANULAR SLUDGE AND BIOFILMS. Proceedings of the Water Environment Federation, 2007, 2007, 145-157.	0.0	0
437	METABOLIC MODEL OF THE AEROBIC METABOLISM OF POLYPHOSPHATE ACCUMULATING ORGANISMS WITH A PROPIONATE CARBON SOURCE. Proceedings of the Water Environment Federation, 2007, 2007, 1243-1255.	0.0	0
438	Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture. Water Research, 2007, 41, 826-834.	5.3	198
439	Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Research, 2007, 41, 3033-3042.	5.3	331
440	Anaerobic metabolism of Defluviicoccus vanus related glycogen accumulating organisms (GAOs) with acetate and propionate as carbon sources. Water Research, 2007, 41, 1885-1896.	5.3	75
441	Effectiveness of an alternating aerobic, anoxic/anaerobic strategy for maintaining biomass activity of BNR sludge during long-term starvation. Water Research, 2007, 41, 2590-2598.	5.3	54
442	Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Research, 2007, 41, 2271-2300.	5.3	998
443	Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions. Water Research, 2007, 41, 4646-4656.	5.3	81
444	Production of targeted poly(3-hydroxyalkanoates) copolymers by glycogen accumulating organisms using acetate as sole carbon source. Journal of Biotechnology, 2007, 129, 489-497.	1.9	79
445	Electron and Carbon Balances in Microbial Fuel Cells Reveal Temporary Bacterial Storage Behavior During Electricity Generation. Environmental Science & Technology, 2007, 41, 2915-2921.	4.6	231
446	Modeling the Aerobic Metabolism of Polyphosphateâ€Accumulating Organisms Enriched with Propionate as a Carbon Source. Water Environment Research, 2007, 79, 2477-2486.	1.3	24
447	Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by poly-phosphate accumulating organisms. Biotechnology and Bioengineering, 2007, 98, 903-912.	1.7	126
448	Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochimica Acta, 2007, 53, 598-603.	2.6	250
449	Elucidation of metabolic pathways in glycogenâ€accumulating organisms with <i>in vivo</i> ¹³ C nuclear magnetic resonance. Environmental Microbiology, 2007, 9, 2694-2706.	1.8	27
450	The Inhibitory Effects of Free Nitrous Acid on the Energy Generation and Growth Processes of an EnrichedNitrobacterCulture. Environmental Science & Technology, 2006, 40, 4442-4448.	4.6	185

#	Article	IF	CITATIONS
451	Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. Journal of Biotechnology, 2006, 122, 62-72.	1.9	139
452	Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. Journal of Biotechnology, 2006, 123, 22-32.	1.9	174
453	Stoichiometric and kinetic characterisation of Nitrosomonas sp. in mixed culture by decoupling the growth and energy generation processes. Journal of Biotechnology, 2006, 126, 342-356.	1.9	35
454	Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. Water Research, 2006, 40, 3838-3848.	5.3	207
455	Differential distribution of ammonia- and nitrite-oxidising bacteria in flocs and granules from a nitrifying/denitrifying sequencing batch reactor. Enzyme and Microbial Technology, 2006, 39, 1392-1398.	1.6	35
456	Stoichiometric and kinetic characterisation ofNitrobacter in mixed culture by decoupling the growth and energy generation processes. Biotechnology and Bioengineering, 2006, 94, 1176-1188.	1.7	62
457	Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enrichedNitrosomonas culture. Biotechnology and Bioengineering, 2006, 95, 830-839.	1.7	186
458	Anaerobic and aerobic metabolism of glycogen-accumulating organisms selected with propionate as the sole carbon source. Microbiology (United Kingdom), 2006, 152, 2767-2778.	0.7	108
459	Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. Journal of Chromatography A, 2005, 1070, 131-136.	1.8	244
460	Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems. Biotechnology and Bioengineering, 2005, 91, 43-53.	1.7	179
461	Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnology and Bioengineering, 2005, 91, 162-168.	1.7	233
462	The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms. Water Research, 2005, 39, 3727-3737.	5.3	167
463	Improved understanding of the interactions and complexities of biological nitrogen and phosphorus removal processes. Reviews in Environmental Science and Biotechnology, 2004, 3, 265-272.	3.9	14
464	Modeling aerobic carbon oxidation and storage by integrating respirometric, titrimetric, and off-gas CO2 measurements. Biotechnology and Bioengineering, 2004, 88, 135-147.	1.7	59
465	An approach to verifying and debugging simulation models governed by ordinary differential equations: Part 1. Methodology for residual generation. International Journal for Numerical Methods in Engineering, 2003, 57, 685-706.	1.5	3
466	An approach to verifying and debugging simulation models governed by ordinary differential equations: Part 2. Residuals analysis and a case study. International Journal for Numerical Methods in Engineering, 2003, 57, 707-722.	1.5	2
467	Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems. Biotechnology and Bioengineering, 2003, 81, 92-105.	1.7	251
468	Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system. Biotechnology and Bioengineering, 2003, 81, 397-404.	1.7	159

#	Article	IF	CITATIONS
469	Development of a novel titration and off-gas analysis (TOGA) sensor for study of biological processes in wastewater treatment systems. Biotechnology and Bioengineering, 2003, 81, 482-495.	1.7	84
470	Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms. Biotechnology and Bioengineering, 2003, 83, 140-148.	1.7	162
471	Model-based analysis of anaerobic acetate uptake by a mixed culture of polyphosphate-accumulating and glycogen-accumulating organisms. Biotechnology and Bioengineering, 2003, 83, 293-302.	1.7	53
472	Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnology and Bioengineering, 2003, 84, 170-178.	1.7	391
473	Online titrimetric and off-gas analysis for examining nitrification processes in wastewater treatment. Water Research, 2003, 37, 2678-2690.	5.3	23
474	Optimization and Control of Nitrogen Removal Activated Sludge Processes: A Review of Recent Developments. Focus on Biotechnology, 2003, , 187-227.	0.4	9
475	Sludge population optimisation: a new dimension for the control of biological wastewater treatment systems. Water Research, 2002, 36, 482-490.	5.3	98
476	Control of nitrate recirculation flow in predenitrification systems. Water Science and Technology, 2002, 45, 29-36.	1.2	80
477	Proposed modifications to metabolic model for glycogen-accumulating organisms under anaerobic conditions. Biotechnology and Bioengineering, 2002, 80, 277-279.	1.7	67
478	Integrating process engineering and microbiology tools to advance activated sludge wastewater treatment research and development. Reviews in Environmental Science and Biotechnology, 2002, 1, 83-97.	3.9	15
479	Control of nitrate ricirculation flow in predenitrification systems. Water Science and Technology, 2002, 45, 29-36.	1.2	2
480	A titrimetric respirometer measuring the nitrifiable nitrogen in wastewater using in-sensor-experiment. Water Research, 2001, 35, 180-188.	5.3	19
481	Reducing the size of a nitrogen removal activated sludge plant by shortening the retention time of inert solids via sludge storage. Water Research, 2000, 34, 539-549.	5.3	19
482	On-line estimation of the maximum specific growth rate of nitrifiers in activated sludge systems. Biotechnology and Bioengineering, 1999, 65, 265-273.	1.7	8
483	Control of External Carbon Addition to Predenitrifying Systems. Journal of Environmental Engineering, ASCE, 1997, 123, 1080-1086.	0.7	26
484	New Sensor Based on pH Effect of Denitrification Process. Journal of Environmental Engineering, ASCE, 1997, 123, 884-891.	0.7	16
485	Improving the observer-based FDI design for efficient fault isolation. International Journal of Control, 1997, 68, 197-218.	1.2	13