
Gary W Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6015995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Role for Cytosolic Hsp70 in Yeast [<i>PSI</i> +] Prion Propagation and [<i>PSI</i> +] as a Cellular Stress. Genetics, 2000, 156, 559-570.	2.9	197
2	Self-Protection against Gliotoxin—A Component of the Gliotoxin Biosynthetic Cluster, GliT, Completely Protects Aspergillus fumigatus Against Exogenous Gliotoxin. PLoS Pathogens, 2010, 6, e1000952.	4.7	166
3	CDK-Dependent Hsp70 Phosphorylation Controls G1 Cyclin Abundance and Cell-Cycle Progression. Cell, 2012, 151, 1308-1318.	28.9	122
4	Propagation of Saccharomyces cerevisiae [PSI +] Prion Is Impaired by Factors That Regulate Hsp70 Substrate Binding. Molecular and Cellular Biology, 2004, 24, 3928-3937.	2.3	114
5	Resistance is not futile: gliotoxin biosynthesis, functionality and utility. Trends in Microbiology, 2015, 23, 419-428.	7.7	96
6	<i>Saccharomyces cerevisiae</i> Hsp70 Mutations Affect [<i>PSI</i> +] Prion Propagation and Cell Growth Differently and Implicate Hsp40 and Tetratricopeptide Repeat Cochaperones in Impairment of [<i>PSI</i> +]. Genetics, 2003, 163, 495-506.	2.9	96
7	Chaperoning prions: the cellular machinery for propagating an infectious protein?. BioEssays, 2005, 27, 823-832.	2.5	93
8	Regulation of Nonribosomal Peptide Synthesis: bis-Thiomethylation Attenuates Gliotoxin Biosynthesis in Aspergillus fumigatus. Chemistry and Biology, 2014, 21, 999-1012.	6.0	79
9	<i>AspergillusÂfumigatus</i> protein phosphatase PpzA is involved in iron assimilation, secondary metabolite production, and virulence. Cellular Microbiology, 2017, 19, e12770.	2.1	72
10	Preservation of genetic and regulatory robustness in ancient gene duplicates of <i>Saccharomyces cerevisiae</i> . Genome Research, 2014, 24, 1830-1841.	5.5	66
11	Cliotoxin effects on fungal growth: Mechanisms and exploitation. Fungal Genetics and Biology, 2012, 49, 302-312.	2.1	65
12	Hsp40 Interacts Directly with the Native State of the Yeast Prion Protein Ure2 and Inhibits Formation of Amyloid-like Fibrils. Journal of Biological Chemistry, 2007, 282, 11931-11940.	3.4	59
13	Ergothioneine Biosynthesis and Functionality in the Opportunistic Fungal Pathogen, Aspergillus fumigatus. Scientific Reports, 2016, 6, 35306.	3.3	55
14	Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus. G3: Genes, Genomes, Genetics, 2015, 5, 1525-1539.	1.8	52
15	The Aspergillus fumigatus Protein GliK Protects against Oxidative Stress and Is Essential for Gliotoxin Biosynthesis. Eukaryotic Cell, 2012, 11, 1226-1238.	3.4	50
16	The evolutionary history of the genes involved in the biosynthesis of the antioxidant ergothioneine. Gene, 2014, 549, 161-170.	2.2	48
17	Interplay between Gliotoxin Resistance, Secretion, and the Methyl/Methionine Cycle in Aspergillus fumigatus. Eukaryotic Cell, 2015, 14, 941-957.	3.4	48
18	A Proteomic Approach to Investigating Gene Cluster Expression and Secondary Metabolite Functionality in Aspergillus fumigatus. PLoS ONE, 2014, 9, e106942.	2.5	44

2

GARY W JONES

#	Article	IF	CITATIONS
19	RNA-seq reveals the pan-transcriptomic impact of attenuating the gliotoxin self-protection mechanism in Aspergillus fumigatus. BMC Genomics, 2014, 15, 894.	2.8	44
20	Structural, mechanistic and functional insight into gliotoxin <i>bis</i> -thiomethylation in <i>Aspergillus fumigatus</i> . Open Biology, 2017, 7, 160292.	3.6	40
21	Importance of the Hsp70 ATPase Domain in Yeast Prion Propagation. Genetics, 2007, 175, 621-630.	2.9	37
22	Global transcript and phenotypic analysis of yeast cells expressing Ssa1, Ssa2, Ssa3 or Ssa4 as sole source of cytosolic Hsp70-Ssa chaperone activity. BMC Genomics, 2014, 15, 194.	2.8	36
23	Influence of specific HSP70 domains on fibril formation of the yeast prion protein Ure2. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20110410.	4.0	33
24	The <i>Aspergillus fumigatus</i> SchA ^{SCH9} kinase modulates SakA ^{HOG1} MAP kinase activity and it is essential for virulence. Molecular Microbiology, 2016, 102, 642-671.	2.5	33
25	The yeast prion protein Ure2: Structure, function and folding. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 535-545.	2.3	32
26	Not quite the SSAme: unique roles for the yeast cytosolic Hsp70s. Current Genetics, 2019, 65, 1127-1134.	1.7	31
27	Involvement of Sulfur in the Biosynthesis of Essential Metabolites in Pathogenic Fungi of Animals, Particularly Aspergillus spp.: Molecular and Therapeutic Implications. Frontiers in Microbiology, 2019, 10, 2859.	3.5	29
28	Quantitative proteomics reveals the mechanism and consequence of gliotoxin-mediated dysregulation of the methionine cycle in Aspergillus niger. Journal of Proteomics, 2016, 131, 149-162.	2.4	28
29	Using Steered Molecular Dynamics to Predict and Assess Hsp70 Substrate-Binding Domain Mutants that Alter Prion Propagation. PLoS Computational Biology, 2013, 9, e1002896.	3.2	24
30	The C-terminal GGAP motif of Hsp70 mediates substrate recognition and stress response in yeast. Journal of Biological Chemistry, 2018, 293, 17663-17675.	3.4	24
31	Steered molecular dynamics simulations on the binding of the appendant structure and helix-β2 in domain-swapped human cystatin C dimer. Journal of Biomolecular Structure and Dynamics, 2012, 30, 652-661.	3.5	19
32	Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation. Scientific Reports, 2016, 6, 32117.	3.3	19
33	Towards understanding the gliotoxin detoxification mechanism: in vivo thiomethylation protects yeast from gliotoxin cytotoxicity. Microbial Cell, 2016, 3, 120-125.	3.2	19
34	Systems impact of zinc chelation by the epipolythiodioxopiperazine dithiol gliotoxin in <i>Aspergillus fumigatus</i> : a new direction in natural product functionality. Metallomics, 2018, 10, 854-866.	2.4	16
35	At the metal–metabolite interface in Aspergillus fumigatus: towards untangling the intersecting roles of zinc and gliotoxin. Microbiology (United Kingdom), 2021, 167, .	1.8	16
36	Rapid deacetylation of yeast Hsp70 mediates the cellular response to heat stress. Scientific Reports, 2019, 9, 16260.	3.3	15

GARY W JONES

#	Article	IF	CITATIONS
37	Assessment of Inactivating Stop Codon Mutations in Forty Saccharomyces cerevisiae Strains: Implications for [PSI+] Prion- Mediated Phenotypes. PLoS ONE, 2011, 6, e28684.	2.5	13
38	Dysregulated gliotoxin biosynthesis attenuates the production of unrelated biosynthetic gene cluster-encoded metabolites in Aspergillus fumigatus. Fungal Biology, 2018, 122, 214-221.	2.5	12
39	Insights into the mechanism of how Morin suppresses amyloid fibrillation of hen egg white lysozyme. International Journal of Biological Macromolecules, 2017, 101, 321-325.	7.5	9
40	Yeast models for amyloid disease. Essays in Biochemistry, 2014, 56, 85-97.	4.7	9
41	The double life of the ribosome: When its protein folding activity supports prion propagation. Prion, 2017, 11, 89-97.	1.8	8
42	The β6/β7 region of the Hsp70 substrate-binding domain mediates heat-shock response and prion propagation. Cellular and Molecular Life Sciences, 2018, 75, 1445-1459.	5.4	7
43	Distinct structural changes in wild-type and amyloidogenic chicken cystatin caused by disruption of C95–C115 disulfide bond. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1-9.	3.5	5
44	The same but different: the role of Hsp70 in heat shock response and prion propagation. Prion, 2018, 12, 170-174.	1.8	5
45	Defining the mechanism of PDI interaction with disulfide-free amyloidogenic proteins: Implications for exogenous protein expression and neurodegenerative disease. International Journal of Biological Macromolecules, 2021, 174, 175-184.	7.5	5
46	Steered molecular dynamics simulation of the binding of the bovine auxilin J domain to the Hsc70 nucleotide-binding domain. Journal of Molecular Modeling, 2017, 23, 320.	1.8	4
47	Molecular dynamics simulation to investigate the impact of disulfide bond formation on conformational stability of chicken cystatin I66Q mutant. Journal of Biomolecular Structure and Dynamics, 2013, 31, 1101-1110.	3.5	3
48	Is the absence of alpha-helix 2 in the appendant structure region the major contributor to structural instability of human cystatin C?. Journal of Biomolecular Structure and Dynamics, 2019, 37, 4522-4527.	3.5	2
49	Mutational analysis of the Hsp70 substrateâ€binding domain: Correlating molecularâ€level changes with in vivo function. Molecular Microbiology, 2021, 115, 1262-1276.	2.5	1
50	Using steered molecular dynamics to study the interaction between ADP and the nucleotide-binding domain of yeast Hsp70 protein Ssa1. Journal of Computer-Aided Molecular Design, 2018, 32, 1217-1227.	2.9	0