Kuniaki Murase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6015519/publications.pdf

Version: 2024-02-01

197 papers 3,104 citations

30 h-index 233338 45 g-index

200 all docs

200 docs citations

times ranked

200

2853 citing authors

#	Article	IF	CITATIONS
1	Enhancement of Oxidation of Silicon Carbide Originating from Stacking Faults Formed by Mode-Selective Phonon Excitation Using a Mid-Infrared Free Electron Laser. Journal of Physical Chemistry Letters, 2022, 13, 2956-2962.	2.1	4
2	Recovery of Scandium from Sulfuric Acid Aqueous Solutions using Ion-Exchange Resin. Journal of MMIJ, 2022, 138, 51-59.	0.4	1
3	Proton conduction in hydronium solvate ionic liquids affected by ligand shape. Physical Chemistry Chemical Physics, 2021, 23, 449-456.	1.3	3
4	Ligand Exchange Conduction of Lithium Ion in a Pentaglyme-Lithium Bis(trifluoromethylsulfonyl)amide Super-Concentrated Electrolyte. Journal of the Electrochemical Society, 2021, 168, 016506.	1.3	7
5	An Ammonium Solvate Ionic Liquid. Journal of the Electrochemical Society, 2021, 168, 026515.	1.3	1
6	Unexpected Downstream Mode of Spatiotemporal Rotating Waves Found in the Model of H2O2 Reduction on a Platinum Ring-Shaped Electrode under Mild Convection. Journal of Physical Chemistry C, 2021, 125, 7240-7250.	1.5	2
7	Electrodeposition of a CoNiCu medium-entropy alloy in a water-in-oil emulsion. Electrochemistry Communications, 2021, 128, 107057.	2.3	9
8	Glyme-Lithium Bis(trifluoromethylsulfonyl)amide Super-concentrated Electrolytes: Salt Addition to Solvate Ionic Liquids Lowers Ionicity but Liberates Lithium Ions. Journal of the Electrochemical Society, 2021, 168, 090521.	1.3	3
9	High-density and low-roughness anodic oxide formed on SiC in highly concentrated LiCl aqueous solution. Electrochemistry Communications, 2021, 132, 107138.	2.3	3
10	Lead Electrodeposition from Highly Concentrated Calcium Chloride Aqueous Solutions. Journal of MMIJ, 2021, 137, 103-109.	0.4	1
11	Dispersion of multiwalled carbon nanotubes into a diglyme solution, electrodeposition of aluminum-based composite, and improvement of hardness. Journal of Alloys and Compounds, 2020, 816, 152585.	2.8	7
12	Reactivity of Zinc Cations under Spontaneous Accumulation of Hydrophobic Coexisting Cations in Hydrophobic Nanoporous Silicon. ACS Omega, 2020, 5, 26894-26901.	1.6	O
13	A Concentrated AlCl ₃ –Diglyme Electrolyte for Hard and Corrosion-Resistant Aluminum Electrodeposits. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43289-43298.	4.0	12
14	Macroporous SiC Formation in Anodizing Triggered by Irradiation-Induced Lattice Defects. Journal of Physical Chemistry C, 2020, 124, 11032-11039.	1.5	9
15	Common mechanism for helical nanotube formation by anodic polymerization and by cathodic deposition using helical pores on silicon electrodes. Electrochemistry Communications, 2020, 114, 106714.	2.3	8
16	Suppression of Fast Proton Conduction by Dilution of a Hydronium Solvate Ionic Liquid: Localization of Ligand Exchange. Journal of the Electrochemical Society, 2020, 167, 046508.	1.3	5
17	Crystalline chromium electroplating with high current efficiency using chloride hydrate melt-based trivalent chromium baths. Electrochimica Acta, 2020, 338, 135873.	2.6	17
18	Electrodeposition of an iron thin film with compact and smooth morphology using an ethereal electrolyte. Electrochimica Acta, 2020, 348, 136289.	2.6	15

#	Article	IF	Citations
19	Basal-Plane Orientation of Zn Electrodeposits Induced by Loss of Free Water in Concentrated Aqueous Solutions. Journal of the Electrochemical Society, 2020, 167, 162511.	1.3	3
20	Black-colored Metallic Aluminum Obtained by Electrolytic Etching in a Highly Concentrated LiTf ₂ N Aqueous Solution. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2020, 71, 376-378.	0.1	4
21	Hydronium bis(trifluoromethanesulfonyl)amide–18-crown-6 (1/1). IUCrData, 2020, 5, .	0.1	0
22	The Mechanism of Nodular Growth in Copper Electrorefining. Journal of MMIJ, 2020, 136, 8-13.	0.4	2
23	Will Concentrated Aqueous Solutions Change Surface Finishing?. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2020, 71, 723-728.	0.1	0
24	Hard Trivalent Chromium Plating from a Concentrated Calcium Chloride Aqueous Solution. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2020, 71, 815-820.	0.1	3
25	Brightness Grade of Silver Electroplating Estimated by Polarization Measurements of Baths. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2020, 71, 642-644.	0.1	1
26	Determination of Stability Constants of Copper(II)–Lactate Complexes in Cu ₂ O Electrodeposition Baths by UV-vis Absorption Spectra Factor Analysis. Journal of the Electrochemical Society, 2019, 166, D761-D767.	1.3	18
27	Cyanide-Free Displacement Silver Plating Using Highly Concentrated Aqueous Solutions of Metal Chloride Salts. Journal of the Electrochemical Society, 2019, 166, D409-D414.	1.3	13
28	Cathodic polarization behavior in an aqueous solution containing Co(II) and Tb(III): Comparison between flat and nanoporous electrodes. Electrochimica Acta, 2019, 309, 339-345.	2.6	1
29	Spontaneous Symmetry Breaking of Nanoscale Spatiotemporal Pattern as the Origin of Helical Nanopore Etching in Silicon. ACS Applied Materials & Interfaces, 2019, 11, 48604-48611.	4.0	16
30	Aging Variation of Magnesium Redox Properties in Ionic Liquid-Grignard Reagent Mixed Electrolytes. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2019, 70, 210-214.	0.1	1
31	A Hydronium Solvate Ionic Liquid: Facile Synthesis of Air-Stable Ionic Liquid with Strong Brønsted Acidity. Journal of the Electrochemical Society, 2018, 165, H121-H127.	1.3	13
32	FEM Simulation of Nodulation in Copper Electro-refining. Minerals, Metals and Materials Series, 2018, , 215-222.	0.3	5
33	Experimental Modeling of Nodulation in Copper Electrorefining. Minerals, Metals and Materials Series, 2018, , 319-323.	0.3	4
34	Irradiation-induced point defects enhance the electrochemical activity of 3C-SiC: An origin of SiC corrosion. Electrochemistry Communications, 2018, 91, 15-18.	2.3	14
35	Room Temperature Electrodeposition of Flat and Smooth Aluminum Layers from An AlCl ₃ /diglyme Bath. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2018, 69, 310-311.	0.1	10
36	A Hydronium Solvate Ionic Liquid: Ligand Exchange Conduction Driven by Labile Solvation. Journal of the Electrochemical Society, 2018, 165, H496-H499.	1.3	8

#	Article	IF	CITATIONS
37	Identification of Copper(II)–Lactate Complexes in Cu ₂ O Electrodeposition Baths: Deprotonation of the α-Hydroxyl Group in Highly Concentrated Alkaline Solution. Journal of the Electrochemical Society, 2018, 165, D444-D451.	1.3	16
38	Redox of ferrocenylthiol SAMs in electrolytes with bis[(trifluoromethyl)sulfonyl]amide as unique anions: Parallel between aqueous and ionic liquid media. Journal of Electroanalytical Chemistry, 2017, 795, 75-80.	1.9	3
39	An Ionic Liquid State Composed of Superoxide Radical Anions and Crownether-Coordinated Potassium Cations. Journal of the Electrochemical Society, 2017, 164, H5119-H5123.	1.3	7
40	Dynamic manipulation of the local pH within a nanopore triggered by surface-induced phase transition. Physical Chemistry Chemical Physics, 2017, 19, 16323-16328.	1.3	6
41	Mechanism of Accelerated Zinc Electrodeposition in Confined Nanopores, Revealed by X-ray Absorption Fine Structure Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 18047-18056.	1.5	6
42	Accelerated growth from amorphous clusters to metallic nanoparticles observed in electrochemical deposition of platinum within nanopores of porous silicon. Electrochemistry Communications, 2016, 71, 9-12.	2.3	10
43	An Ionic Liquid Consisting of Crown Ether - Coordinated Hydronium Cation and Amide Anion. ECS Transactions, 2016, 75, 239-244.	0.3	1
44	Electrochemically active species in aluminum electrodeposition baths of AlCl3/glyme solutions. Electrochimica Acta, 2016, 211, 561-567.	2.6	53
45	High-Rate Charging of Zinc Anodes Achieved by Tuning Hydration Properties of Zinc Complexes in Water Confined within Nanopores. Journal of Physical Chemistry C, 2016, 120, 24112-24120.	1.5	23
46	True Molecular-resolution Imaging on Alkanethiol Self-assembled Monolayers in Ionic Liquids by Frequency Modulation Atomic Force Microscopy Utilizing a Quartz Tuning Fork Sensor. Chemistry Letters, 2015, 44, 459-461.	0.7	9
47	Spontaneous Formation of Microgroove Arrays on the Surface of pâ€Type Porous Silicon Induced by a Turing Instability in Electrochemical Dissolution. ChemPhysChem, 2015, 16, 1613-1618.	1.0	6
48	Use of Diode Analogy in Explaining the Voltammetric Characteristics of Immobilized Ferrocenyl Moieties on a Silicon Surface. ChemElectroChem, 2015, 2, 68-72.	1.7	5
49	(Invited) Electrodeposition in Microporous Silicon from the Viewpoint of Hydration Property: Effect of Coexisting Ions in Zinc Electrodeposition. ECS Transactions, 2015, 69, 15-21.	0.3	0
50	Penetration of Platinum Complex Anions into Porous Silicon: Anomalous Behavior Caused by Surface-Induced Phase Transition. Journal of Physical Chemistry C, 2015, 119, 19105-19116.	1.5	14
51	Room Temperature Magnesium Electrodeposition from Glyme-Coordinated Ammonium Amide Electrolytes. Journal of the Electrochemical Society, 2015, 162, D389-D396.	1.3	37
52	Quest for Ether-Coordinated Superoxide Ionic Liquids. ECS Transactions, 2014, 64, 21-25.	0.3	1
53	Room-Temperature Electrodeposition of Mg Metal from Amide Salts Dissolved in Glyme-Ionic Liquid Mixture. Journal of the Electrochemical Society, 2014, 161, D102-D106.	1.3	45
54	Lateral Growth of Polypyrrole Electropolymerized along Hydrophobic Insulative Substrates. ECS Electrochemistry Letters, 2014, 3, G5-G7.	1.9	6

#	Article	IF	CITATIONS
55	Effect of cation species on surface-induced phase transition observed for platinum complex anions in platinum electrodeposition using nanoporous silicon. Journal of Chemical Physics, 2014, 141, 074701.	1.2	10
56	Electrochemical Reactivity of Magnesium Ions with Sn-Based Binary Alloys (Cu-Sn, Pb-Sn, and In-Sn). ECS Transactions, 2014, 58, 75-80.	0.3	17
57	A concept of dual-salt polyvalent-metal storage battery. Journal of Materials Chemistry A, 2014, 2, 1144-1149.	5.2	133
58	Solubility and Stability of Superoxide Radical Anions in Room-Temperature Ionic Liquids. ECS Transactions, 2014, 58, 33-37.	0.3	1
59	Structural Analysis of Ionic-liquid/Organic-monolayer Interface by Phase Modulation Atomic Force Microscopy Utilizing a Quartz Tuning Fork Sensor. Electrochemistry, 2014, 82, 380-384.	0.6	8
60	AlCl3-dissolved Diglyme as Electrolyte for Room-Temperature Aluminum Electrodeposition. Electrochemistry, 2014, 82, 946-948.	0.6	42
61	Suppression of Silver Dissolution by Contacting Different Metals during Copper Electrorefining. Journal of MMIJ, 2014, 130, 65-69.	0.4	7
62	Photochemical grafting of methyl groups on a $Si(111)$ surface using a Grignard reagent. Journal of Colloid and Interface Science, 2013, 411, 145-151.	5.0	3
63	Enhanced Anodic Dissolution of Magnesium in Quaternary-Ammonium-Based Ionic Liquid Containing a Small Amount of Water. Journal of the Electrochemical Society, 2013, 160, D453-D458.	1.3	12
64	Lithiation behavior of single-phase Cu–Sn intermetallics and effects on their negative-electrode properties. Electrochimica Acta, 2013, 98, 239-243.	2.6	20
65	Photochemical Assembly of Gold Nanoparticle Arrays Covalently Attached to Silicon Surface Assisted by Localized Plasmon in the Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 2480-2485.	1.5	20
66	Potentiostatic Cu-Zn Alloying for Polymer Metallization Using Medium-Low Temperature Ionic Liquid Baths. Journal of the Electrochemical Society, 2013, 160, D417-D421.	1.3	9
67	Visible Light-Induced Immobilization of Gold Nanoparticles on Silicon Substrates. ECS Transactions, 2013, 50, 137-143.	0.3	0
68	Visualization of Ionic-Liquid/Solid Interfaces by Frequency Modulation Atomic Force Microscopy. ECS Transactions, 2013, 50, 349-355.	0.3	17
69	Vinylferrocene-Terminated Si(111) Prepared in Diethyl Ether and Dibutyl Ether Grafting Media. ECS Transactions, 2013, 50, 37-46.	0.3	0
70	Activation of Cyclo-Olefine Polymer Surface for the Promotion of Palladium Adsorption Based on the Oxygen-Amprified Vacuum Ultra-Violet Process. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2013, 64, 662-668.	0.1	7
71	Influence of Chloride Ions on Quality and Mechanical Properties of Electrodeposited Copper in Copper Electrorefining. Journal of MMIJ, 2013, 129, 72-77.	0.4	4
72	Frequency Modulation Atomic Force Microscopy in Ionic Liquid Using Quartz Tuning Fork Sensors. Japanese Journal of Applied Physics, 2012, 51, 08KB08.	0.8	31

#	Article	IF	Citations
73	Photochemical Preparation of Methyl-terminated Si(111) Surface Using a Grignard Reagent. Chemistry Letters, 2012, 41, 902-904.	0.7	4
74	Vinylferrocene Photochemical Preparation on $Si(111)$ Surface in Different Grafting Media. Chemistry Letters, 2012, 41, 1188-1190.	0.7	4
75	Nanotemplate Prepared by Means of Vacuum Ultraviolet Patterning of Alkylsilane Self-assembled Monolayer on ITO Using a Porous Alumina Mask: Application to the Fabrication of Gold Nanoparticle Arrays. Chemistry Letters, 2012, 41, 392-393.	0.7	5
76	Self-alignment of Gold Nanoparticles through the Control of Particle-substrate and Particle-particle Interactions. Procedia Engineering, 2012, 36, 374-381.	1.2	3
77	UV induced covalent assembly of gold nanoparticles in linear patterns on oxide free silicon surface. Journal of Materials Chemistry, 2012, 22, 16546.	6.7	10
78	Site-Selective Assembly and Reorganization of Gold Nanoparticles along Aminosilane-Covered Nanolines Prepared on Indium–Tin Oxide. Langmuir, 2012, 28, 7579-7584.	1.6	30
79	Circular Arrays of Gold Nanoparticles of a Single Particle Line Thickness Formed on Indium Tin Oxide. Applied Physics Express, 2012, 5, 025202.	1.1	3
80	Reduced Consumption of Glue and Electric Power by Continuous Glue Dissolution System Installed at The Tamano Refinery. Journal of MMIJ, 2012, 128, 155-159.	0.4	6
81	Drastic Change in Electrical Properties of Electrodeposited ZnO: Systematic Study by Hall Effect Measurements. Journal of Physical Chemistry C, 2012, 116, 15925-15931.	1.5	31
82	Covalent assembly of silver nanoparticles on hydrogen-terminated silicon surface. Journal of Colloid and Interface Science, 2012, 382, 22-27.	5.0	8
83	Anodic Dissolution Behavior of Magnesium in Hydrophobic Ionic Liquids. ECS Transactions, 2011, 33, 65-70.	0.3	4
84	Thermodynamics of Cathodic ZnTe Electrodeposition Using Basic Ammoniacal Electrolytes: Why CdTe Can Deposit While ZnTe Cannot. High Temperature Materials and Processes, 2011, 30, .	0.6	2
85	Molecular packing density of a self-assembled monolayer formed from N-(2-aminoethyl)-3-aminopropyltriethoxysilane by a vapor phase process. Chemical Communications, 2011, 47, 8841.	2.2	17
86	Electrochemical Polishing of Metallic Titanium in Ionic Liquid. Materials Transactions, 2011, 52, 2061-2066.	0.4	14
87	Formation of uniform ferrocenyl-terminated monolayer covalently bonded to Si using reaction of hydrogen-terminated $Si(1\ 1\ 1)$ surface with vinylferrocene/n-decane solution by visible-light excitation. Journal of Colloid and Interface Science, 2011, 361, 259-269.	5.0	16
88	Self-aligned nucleation of gold onto templates with a nano-scale precision fabricated by scanning probe lithography. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 209-213.	2.0	4
89	Preparation of Cu-Sn Layers on Polymer Substrate by Reduction-Diffusion Method Using Ionic Liquid Baths. Journal of the Electrochemical Society, 2011, 158, D335.	1.3	16
90	Anionic effect of ionic liquids electrolyte on electrochemical behavior of ferrocenylthiol/alkanethiol binary SAMs. Journal of Electroanalytical Chemistry, 2010, 643, 58-66.	1.9	22

#	Article	IF	CITATIONS
91	Potentiostatic Cu-Zn Alloying for Polymer Metallization Using Medium-Low Temperature Ionic Liquid Baths. ECS Transactions, 2010, 33, 515-521.	0.3	3
92	Alkanethiol Self-Assembled Monolayers Formed on Silicon Substrates. Japanese Journal of Applied Physics, 2010, 49, 01AE09.	0.8	12
93	Lamination Interface of the Wax-Less Permanent Cathode Process in Copper Refinery. Journal of MMIJ, 2010, 126, 697-700.	0.4	3
94	Soft processing for formation of self-assembled monolayer on hydrogen-terminated silicon surface based on visible-light excitation. Journal of Vacuum Science & Technology B, 2009, 27, 858-862.	1.3	7
95	Reversible Potential Change of Ferrocenylthiol Monolayers Induced by Atomic Force Microscopy. Japanese Journal of Applied Physics, 2009, 48, 08JB15.	0.8	5
96	Scanning probe anodization patterning of Si substrates covered with a self-assembled monolayer dependent on surface hydrophilicity. Journal of Vacuum Science & Technology B, 2009, 27, 928.	1.3	9
97	Vacuum ultraviolet-induced surface modification of cyclo-olefin polymer substrates for photochemical activation bonding. Applied Surface Science, 2009, 255, 3648-3654.	3.1	68
98	Probing the diffusion of vacuum ultraviolet (\hat{l} »=172nm) induced oxidants by nanoparticles immobilization. Applied Surface Science, 2009, 255, 9817-9821.	3.1	2
99	Organosilane self-assembled multilayer formation based on activation of methyl-terminated surface with reactive oxygen species generated by vacuum ultra-violet excitation of atmospheric oxygen molecules. Applied Surface Science, 2009, 256, 1507-1513.	3.1	11
100	Gold Nanoparticle Arrays Fabricated on a Silicon Substrate Covered with a Covalently Bonded Alkyl Monolayer by Electroless Plating Combined with Scanning Probe Anodization Lithography. Journal of Physical Chemistry C, 2009, 113, 11643-11646.	1.5	10
101	Alkyl and Alkoxyl Monolayers Directly Attached to Silicon: Chemical Durability in Aqueous Solutions. Langmuir, 2009, 25, 5516-5525.	1.6	45
102	Effects of Counteranions and Dissolved Oxygen on Chemical ZnO Deposition from Aqueous Solutions. Journal of the Electrochemical Society, 2009, 156, H320.	1.3	16
103	Electrochemical Behavior of Ferrocenylthiol / Alkanethiol Binary SAM in Ionic Liquids. ECS Transactions, 2009, 16, 575-581.	0.3	3
104	Sustainable Electrodeposition of ZnO by a Galvanic Contact Method. Electrochemical and Solid-State Letters, 2009, 12, D72.	2.2	8
105	Cu-Sn Alloy Metallization of Polymer Substrate through Reduction-Diffusion Method Using Ionic Liquid Bath at Medium-Low Temperatures. Electrochemistry, 2009, 77, 677-679.	0.6	5
106	Ruthenium–amine complexation for constructing self-assembled molecular films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 94-98.	2.3	4
107	Alternate stacking of transition metal ions and terephthalic acid molecules for the fabrication of self-assembled multilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 249-253.	2.3	8
108	Structural Organization of Gold Nanoparticles onto the ITO Surface and Its Optical Properties as a Function of Ensemble Size. Langmuir, 2008, 24, 3787-3793.	1.6	60

#	Article	IF	Citations
109	Self-Assembled Monolayers Directly Attached to Silicon Substrates Formed from 1-Hexadecene by Thermal, Ultraviolet, and Visible Light Activation Methods. Japanese Journal of Applied Physics, 2008, 47, 5659.	0.8	33
110	Surface Chemical Conversion of Organosilane Self-Assembled Monolayers with Active Oxygen Species Generated by Vacuum Ultraviolet Irradiation of Atmospheric Oxygen Molecules. Japanese Journal of Applied Physics, 2008, 47, 307.	0.8	28
111	Self-Assembly of Ionic Liquid (BMI-PF ₆)-Stabilized Gold Nanoparticles on a Silicon Surface: Chemical and Structural Aspects. Langmuir, 2008, 24, 7785-7792.	1.6	74
112	Regulation of Pattern Dimension as a Function of Vacuum Pressure: Alkyl Monolayer Lithography. Langmuir, 2008, 24, 12077-12084.	1.6	25
113	Self-Assembly Guided One-Dimensional Arrangement of Gold Nanoparticles: A Facile Approach. Journal of Physical Chemistry C, 2008, 112, 16182-16185.	1.5	22
114	Spatially Controlled Functionalization and Chemical Manipulation to Fabricate Two-Dimensional Arrays of Gold Nanoparticles onto Indium Tin Oxide. Japanese Journal of Applied Physics, 2008, 47, 5048-5052.	0.8	11
115	Electrochemical Iron-Chromium Alloying of Carbon Steel Surface Using Alternating Pulsed Electrolysis. Materials Transactions, 2008, 49, 1346-1354.	0.4	1
116	Scanning Capacitance Microscopy for Alkylsilane-Monolayer-Covered Si Substrate Patterned by Scanning Probe Lithography. Japanese Journal of Applied Physics, 2007, 46, 5621.	0.8	6
117	Electrochemical Alloying of Copper Substrate with Tin Using Ionic Liquid as an Electrolyte at Medium-Low Temperatures. Journal of the Electrochemical Society, 2007, 154, D612.	1.3	15
118	Faster Growth of Cu-Sn Layers Through Reduction-Diffusion Method Using Ionic Liquid Bath at Medium-Low Temperatures. ECS Transactions, 2007, 11, 103-109.	0.3	2
119	Multicycle Desorption-Adsorption Voltammetry for Self-Assembled Mixed Monolayer Containing Ferrocenylthiol Molecules: A Discussion on Molecular Interaction in the Mixed Layer. Electrochemistry, 2007, 75, 523-527.	0.6	1
120	Thermal Immobilization of Ferrocene Derivatives on (111) Surface of n-Type Silicon:Â Parallel between Vinylferrocene and Ferrocenecarboxaldehyde. Langmuir, 2007, 23, 3193-3198.	1.6	59
121	Alternating Pulsed Electrolysis for Iron-Chromium Alloy Coatings with Continuous Composition Gradient. Journal of the Electrochemical Society, 2007, 154, D304.	1.3	11
122	NO Decomposition using Structure-Changed Titanium Oxides by Mechanical Milling. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 686-693.	0.1	0
123	Redox and transport behaviors of Cu(I) ions in TMHA-Tf2N ionic liquid solution. Journal of Applied Electrochemistry, 2007, 37, 339-344.	1.5	28
124	Self-assembled mixed monolayer containing ferrocenylthiol molecules: STM observations and electrochemical investigations. Electrochimica Acta, 2007, 52, 4436-4442.	2.6	33
125	Ni–Mo alloying of nickel surface by alternating pulsed electrolysis using molybdenum(VI) baths. Electrochimica Acta, 2007, 52, 6041-6051.	2.6	34
126	Fe-Cr Alloying of Iron Surface by Asymmetric Alternating Pulsed Electrolysis Using Trivalent Chromium Solution. Electrochemical and Solid-State Letters, 2006, 9, B32.	2.2	5

#	Article	IF	Citations
127	Organic Monolayers Covalently Bonded to Si as Ultra Thin Photoresist Films in Vacuum UV Lithography. Japanese Journal of Applied Physics, 2006, 45, 5456-5460.	0.8	20
128	Formation of Cu-Sn Alloy Layer by Contact Deposition Using Quaternary Ammonium-Imide-Type Ionic Liquid. Electrochemical and Solid-State Letters, 2006, 9, C69.	2.2	23
129	Microstructure and Electronic Structure of Transparent Ferromagnetic ZnOâ^'Spinel Iron Oxide Composite Films. Chemistry of Materials, 2006, 18, 763-770.	3.2	24
130	Composite Hypo-Hyper-d-Intermetallic and Interionic Phases as Supported Interactive Electrocatalysts. Journal of Physical Chemistry B, 2006, 110, 3030-3042.	1.2	64
131	Self-assembled Multilayer Formed by Alternate Stacking of Zirconium and Terephthalic Acid Layers. Chemistry Letters, 2006, 35, 1392-1393.	0.7	12
132	Effect of Chloride Ions on the Electrodeposition Behavior of CdTe from Ammoniacal Basic Electrolytes. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2006, 57, 70-76.	0.1	1
133	Microstructures and MR effects of transparent ferromagnetic chemically prepared Fe-Zn-O films. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2760-2764.	0.8	2
134	Galvanic contact deposition of CdTe from ammoniacal basic electrolytes at elevated temperatures using an autoclave-type electrolysis vessel. Electrochemistry Communications, 2006, 8, 605-609.	2.3	8
135	Studies of oxidation behaviors of CdTe in ammoniacal basic electrolytes. Electrochimica Acta, 2006, 51, 4987-4993.	2.6	8
136	Water content and related physical properties of aliphatic quaternary ammonium imide-type ionic liquid containing metal ions. Science and Technology of Advanced Materials, 2006, 7, 502-510.	2.8	15
137	QCM Studies of Chemical Solution Deposition of ZnO in Aqueous Media Containing Zinc Nitrate and Dimethylamineborane. Journal of the Electrochemical Society, 2006, 153, C735.	1.3	13
138	Effect of Chloride Ions on Electrodeposition of CdTe from Ammoniacal Basic Electrolytes. Journal of the Electrochemical Society, 2006, 153, C121.	1.3	10
139	Thermal Phase Transformation of ZnO-Based Transparent Ferromagnetic Composite Films and the Change in Magnetic Characteristics. Journal of the Electrochemical Society, 2006, 153, G168.	1.3	6
140	Electrodeposition of Dendritic Copper on Copper or Titanium Electrode from Aqueous Copper(I) Chloride Solution Containing Condensed Sodium Halides. Shigen-to-Sozai, 2006, 122, 21-25.	0.1	0
141	Structural and Electrical Characterizations of Electrodeposited p-Type Semiconductor Cu2O Films ChemInform, 2005, 36, no.	0.1	2
142	Behavior and Thermodynamic Consideration of Displacement Deposition of Copper and Palladium onto Titanium Nitride. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2005, 56, 145-150.	0.1	0
143	Electrolytic Preparation and Properties of Composite Ni-Mo Alloy Coatings Containing TiO2 Particles. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2005, 56, 692-697.	0.1	1
144	Electrodeposition Behavior of Dendritic Copper from Aqueous Copper (I) Chloride Solution Containing Condensed Sodium Halides. Shigen-to-Sozai, 2005, 121, 103-110.	0.1	3

#	Article	IF	CITATIONS
145	Electrochemical QCM Studies of CdTe Formation and Dissolution in Ammoniacal Basic Aqueous Electrolytes. Journal of the Electrochemical Society, 2005, 152, C304.	1.3	8
146	Electroless Nickel Plating onto Minute Patterns of Copper Using Ti(IV)â^•Ti(III) Redox Couple. Journal of the Electrochemical Society, 2005, 152, C588.	1.3	7
147	Galvanic Contact Deposition of CdTe Layers Using Ammoniacal Basic Aqueous Solution. Journal of the Electrochemical Society, 2005, 152, C237.	1.3	10
148	Characterization of Transparent Ferromagnetic Fe:ZnO Semiconductor Films Chemically Prepared from Aqueous Solutions. Journal of the Electrochemical Society, 2005, 152, G736.	1.3	28
149	Structural and Electrical Characterizations of Electrodeposited p-Type Semiconductor Cu[sub 2]O Films. Journal of the Electrochemical Society, 2005, 152, C179.	1.3	146
150	Water Content and Properties of Aliphatic Ammonium Imide-Type Room Temperature Ionic Liquid Containing Metal Ions. Electrochemistry, 2005, 73, 686-691.	0.6	16
151	Extended Brewer thermodynamic basis of facilitated thermal hypo-hyper-d-intermetallic phase formation. Chemical Industry and Chemical Engineering Quarterly, 2005, 11, 156-159.	0.4	O
152	é›»ä½ï¼pH図ã,'使ã£ã¶åŠå°Žä½"é›»æžã,'è§£é‡^ã™ã,‹ï½žCdTeé›»æžã,'例ã«ï½ž. Hyomen Gijutsu/Journal	of th ⊉ Surf	face Finishing
153	Electrodeposition of CdTe from Acidic Aqueous Solutions Containing Citric Acid. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2004, 55, 360-365.	0.1	1
154	Comparison of Microstructures of CdTe Layers Electrodeposited from Basic Ammoniacal and Acidic Sulfate Electrolytes. Journal of the Electrochemical Society, 2004, 151, C168.	1.3	20
155	Electrodeposition of CdTe Semiconductor Layers from Basic Ammoniacal Aqueous Solutions — Thermodynamics, Morphology, and Electrical Properties. High Temperature Materials and Processes, 2004, 23, 383-398.	0.6	2
156	Design of Acidic Ni-Mo Alloy Plating Baths Using a Set of Apparent Equilibrium Constants. Journal of the Electrochemical Society, 2004, 151, C798.	1.3	19
157	Analytical TEM Study of CdTe Layer Electrodeposited from Basic Ammoniacal Aqueous Electrolyte. Journal of the Electrochemical Society, 2004, 151, C712.	1.3	5
158	Hall effect measurements on CdTe layers electrodeposited from acidic aqueous electrolyte. Journal of Electroanalytical Chemistry, 2004, 562, 247-253.	1.9	46
159	Transparent Ferromagnetic Semiconductor Fe-Zn-O Heterogranular Films. Electrochemical and Solid-State Letters, 2004, 7, G235.	2.2	5
160	Atomic and Electronic Structures of Hydrated Polymolybdates by First Principles Calculations. Materials Transactions, 2004, 45, 1982-1986.	0.4	5
161	Electroless Plating of Cobalt Containing Tungsten Using Hydrazine as a Reducing Agent. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2004, 55, 565-567.	0.1	O
162	Effect of anions on electrodeposition of CdTe from ammoniacal basic solutions. Surface and Coatings Technology, 2003, 169-170, 108-111.	2.2	9

#	Article	IF	CITATIONS
163	Electrical Properties of CdTe Layers Electrodeposited from Ammoniacal Basic Electrolytes. Journal of the Electrochemical Society, 2003, 150, C413.	1.3	42
164	Photoassisted Electrodeposition of CdTe Layer from Ammoniacal Basic Aqueous Solutions. Journal of the Electrochemical Society, 2003, 150, C44.	1.3	30
165	æ¹¿å¼æ³•ã«ã,^ã,<å蛭™½é›»æ±ç""CdTeè—"è†œææ—™ã®ä½œè£½. Hyomen Gijutsu/Journal of the Surface Finis	shi n g.Soci	etyLof Japan, 2
166	Microstructures of CdTe Semiconductor Layers Electrodeposited from Basic and Acidic Aqueous Solutions. Materia Japan, 2003, 42, 907-907.	0.1	0
167	Electrodeposition of CdTe from Basic Aqueous Solutions Containing Diethylenetriamine Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2002, 53, 535-543.	0.1	10
168	Evidence for the Diffusion of Au Atoms into the Te UPD Layer Formed on a $Au(111)$ Substrate. Journal of the Electrochemical Society, 2002, 149, C83.	1.3	7
169	Displacement Deposition Behavior of Copper via Oxidative Dissolution of TiN Thin Film Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2001, 52, 773-777.	0.1	1
170	Title is missing!. Journal of Applied Electrochemistry, 2001, 31, 1089-1094.	1.5	73
171	Electrodeposition of CdTe from Basic Aqueous Solutions Containing Ethylenediamine. Journal of the Electrochemical Society, 2001, 148, C203.	1.3	20
172	Determination of Mo(VI) Species and Composition in Ni-Mo Alloy Plating Baths by Raman Spectra Factor Analysis. Journal of the Electrochemical Society, 2000, 147, 2210.	1.3	35
173	Control of Composition and Conduction Type of CdTe Film Electrodeposited from Ammonia Alkaline Aqueous Solutions. Journal of the Electrochemical Society, 1999, 146, 4477-4484.	1.3	34
174	Potentialâ€pH Diagram of the Cd â€â€‰Te â€ê€‰â€‰NH 3 â€â€‰â€‰H 2 Oâ€9 Ammoniacal Alkaline Baths. Journal of the Electrochemical Society, 1999, 146, 1798-1803.	‰ System	and Electrod
175	Electrodeposition of CdTe Films from Ammoniacal Alkaline Aqueous Solution at Low Cathodic Overpotentials. Journal of the Electrochemical Society, 1999, 146, 531-536.	1.3	58
176	Effect of Ammonia Concentration on Electrodeposition of CdTe from Ammonia-alkaline Solutions Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 1999, 50, 367-373.	0.1	13
177	Photo-assisted Electrodeposition of CdTe Semiconductor from Ammoniacal Alkaline Aqueous Solutions. Electrochemistry, 1999, 67, 331-335.	0.6	9
178	pH measurement in the vicinity of a cathode evolving hydrogen gas using an antimony microelectrode. Journal of Applied Electrochemistry, 1998, 28, 617-622.	1.5	31
179	Measurement of pH in the vicinity of a cathode during the chloride electrowinning of nickel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1998, 29, 1193-1198.	1.0	6
180	Recovery of vanadium, nickel and magnesium from a fly ash of bitumen-in-water emulsion by chlorination and chemical transport. Journal of Alloys and Compounds, 1998, 264, 151-156.	2.8	21

#	Article	lF	Citations
181	Mutual separation characteristics for the yttrium and lanthanides with chemical vapor transport process mediated by metal chloride gaseous complexes. Journal of Alloys and Compounds, 1998, 265, 125-131.	2.8	28
182	Determination of Chemical Species and Their Composition in Niâ€Mo Alloy Plating Baths by Factor Analysis of Visible Absorption Spectra. Journal of the Electrochemical Society, 1998, 145, 523-528.	1.3	22
183	The Structure of Poly-Molybdate Ions and It's Relevance to the Electroplating of Molybdenum Alloy Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 1998, 49, 1115-1121.	0.1	4
184	Extraction and mutual separation of rare earths from concentrates and crude oxides using chemical vapor transport. Journal of Alloys and Compounds, 1996, 233, 96-106.	2.8	39
185	Vapor phase extraction and separation of rare earths from bastnaesite concentrate mediated by vapor complexes. Journal of Alloys and Compounds, 1996, 245, 10-14.	2.8	22
186	Mass Spectrometric Investigation of the Vapor over the LnCl3–KCl Equimolar Melt (Ln = Nd, Er) at High Temperatures. Bulletin of the Chemical Society of Japan, 1996, 69, 353-357.	2.0	19
187	Mutual Separation of Mixed Praseodymium and Neodymium Oxides via Metal Halide Gaseous Complexes. Industrial & Damp; Engineering Chemistry Research, 1995, 34, 3963-3969.	1.8	19
188	Recovery of rare metals from scrap of rare earth intermetallic material by chemical vapour transport. Journal of Alloys and Compounds, 1995, 217, 218-225.	2.8	113
189	Raman spectra of liquids and glasses in the RCl3î—'AlCl3 (Rî—»Nd, Gd) systems. Journal of Non-Crystalline Solids, 1994, 180, 88-90.	1.5	12
190	Vapor Phase Extraction and Mutual Separation of Rare Earths from Monazite Using Chemical Vapor Transport Mediated by Vapor Complexes. Chemistry Letters, 1994, 23, 1297-1300.	0.7	21
191	Recovery of Nickel and Vanadium from a Fly Ash of Bitumen-in-Water Emulsion by Chemical Vapor Transport. Chemistry Letters, 1994, 23, 1845-1848.	0.7	4
192	Rare earth separation using a chemical vapour transport process mediated by vapour complexes of the LnCl3î—AlCl3 system. Journal of Alloys and Compounds, 1993, 198, 31-38.	2.8	54
193	Mutual Separation Characteristics for Lanthanoid Elements via Gas Phase Complexes with Alkaline Chlorides. Chemistry Letters, 1992, 21, 511-514.	0.7	32
194	Mutual Separation Characteristics and Mechanism for Lanthanoid Elements via Gas Phase Complexes with Alkaline Metal and/or Aluminium Chlorides. Bulletin of the Chemical Society of Japan, 1992, 65, 2724-2728.	2.0	31
195	Plasma Nitriding Characteristics of Sm2Fe17Nx. Chemistry Letters, 1992, 21, 1243-1246.	0.7	2
196	Recovery of Rare Metals from the Sludge of Samarium-Cobalt Magnetic Alloy by a Chemical Vapor Transporting Method. Chemistry Letters, 1992, 21, 1555-1558.	0.7	22
197	Thermodynamic Design of Electrolyte for CuO/Cu2O Bilayer by Anodic Electrodeposition. Journal of the Electrochemical Society, 0, , .	1.3	2