Kuniaki Murase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6015519/publications.pdf Version: 2024-02-01

KIINIAKI MIIDASE

#	Article	IF	CITATIONS
1	Structural and Electrical Characterizations of Electrodeposited p-Type Semiconductor Cu[sub 2]O Films. Journal of the Electrochemical Society, 2005, 152, C179.	2.9	146
2	A concept of dual-salt polyvalent-metal storage battery. Journal of Materials Chemistry A, 2014, 2, 1144-1149.	10.3	133
3	Recovery of rare metals from scrap of rare earth intermetallic material by chemical vapour transport. Journal of Alloys and Compounds, 1995, 217, 218-225.	5.5	113
4	Self-Assembly of Ionic Liquid (BMI-PF ₆)-Stabilized Gold Nanoparticles on a Silicon Surface: Chemical and Structural Aspects. Langmuir, 2008, 24, 7785-7792.	3.5	74
5	Title is missing!. Journal of Applied Electrochemistry, 2001, 31, 1089-1094.	2.9	73
6	Vacuum ultraviolet-induced surface modification of cyclo-olefin polymer substrates for photochemical activation bonding. Applied Surface Science, 2009, 255, 3648-3654.	6.1	68
7	Composite Hypo-Hyper-d-Intermetallic and Interionic Phases as Supported Interactive Electrocatalysts. Journal of Physical Chemistry B, 2006, 110, 3030-3042.	2.6	64
8	Structural Organization of Gold Nanoparticles onto the ITO Surface and Its Optical Properties as a Function of Ensemble Size. Langmuir, 2008, 24, 3787-3793.	3.5	60
9	Thermal Immobilization of Ferrocene Derivatives on (111) Surface of n-Type Silicon:Â Parallel between Vinylferrocene and Ferrocenecarboxaldehyde. Langmuir, 2007, 23, 3193-3198.	3.5	59
10	Electrodeposition of CdTe Films from Ammoniacal Alkaline Aqueous Solution at Low Cathodic Overpotentials. Journal of the Electrochemical Society, 1999, 146, 531-536.	2.9	58
11	Rare earth separation using a chemical vapour transport process mediated by vapour complexes of the LnCl3î—,AlCl3 system. Journal of Alloys and Compounds, 1993, 198, 31-38.	5.5	54
12	Electrochemically active species in aluminum electrodeposition baths of AlCl3/glyme solutions. Electrochimica Acta, 2016, 211, 561-567.	5.2	53
13	Potentialâ€pH Diagram of the Cd â€â€‰Te â€â€‰â€‰NH 3 â€â€‰â€‰H 2 Oâ€ Ammoniacal Alkaline Baths. Journal of the Electrochemical Society, 1999, 146, 1798-1803.	‰System 2.9	n and Electro
14	Hall effect measurements on CdTe layers electrodeposited from acidic aqueous electrolyte. Journal of Electroanalytical Chemistry, 2004, 562, 247-253.	3.8	46
15	Alkyl and Alkoxyl Monolayers Directly Attached to Silicon: Chemical Durability in Aqueous Solutions. Langmuir, 2009, 25, 5516-5525.	3.5	45
16	Room-Temperature Electrodeposition of Mg Metal from Amide Salts Dissolved in Glyme-Ionic Liquid Mixture. Journal of the Electrochemical Society, 2014, 161, D102-D106.	2.9	45
17	Electrical Properties of CdTe Layers Electrodeposited from Ammoniacal Basic Electrolytes. Journal of the Electrochemical Society, 2003, 150, C413.	2.9	42
18	AlCl3-dissolved Diglyme as Electrolyte for Room-Temperature Aluminum Electrodeposition. Electrochemistry, 2014, 82, 946-948.	1.4	42

#	Article	IF	CITATIONS
19	Extraction and mutual separation of rare earths from concentrates and crude oxides using chemical vapor transport. Journal of Alloys and Compounds, 1996, 233, 96-106.	5.5	39
20	Room Temperature Magnesium Electrodeposition from Glyme-Coordinated Ammonium Amide Electrolytes. Journal of the Electrochemical Society, 2015, 162, D389-D396.	2.9	37
21	Determination of Mo(VI) Species and Composition in Ni-Mo Alloy Plating Baths by Raman Spectra Factor Analysis. Journal of the Electrochemical Society, 2000, 147, 2210.	2.9	35
22	Control of Composition and Conduction Type of CdTe Film Electrodeposited from Ammonia Alkaline Aqueous Solutions. Journal of the Electrochemical Society, 1999, 146, 4477-4484.	2.9	34
23	Ni–Mo alloying of nickel surface by alternating pulsed electrolysis using molybdenum(VI) baths. Electrochimica Acta, 2007, 52, 6041-6051.	5.2	34
24	Self-assembled mixed monolayer containing ferrocenylthiol molecules: STM observations and electrochemical investigations. Electrochimica Acta, 2007, 52, 4436-4442.	5.2	33
25	Self-Assembled Monolayers Directly Attached to Silicon Substrates Formed from 1-Hexadecene by Thermal, Ultraviolet, and Visible Light Activation Methods. Japanese Journal of Applied Physics, 2008, 47, 5659.	1.5	33
26	Mutual Separation Characteristics for Lanthanoid Elements via Gas Phase Complexes with Alkaline Chlorides. Chemistry Letters, 1992, 21, 511-514.	1.3	32
27	Mutual Separation Characteristics and Mechanism for Lanthanoid Elements via Gas Phase Complexes with Alkaline Metal and/or Aluminium Chlorides. Bulletin of the Chemical Society of Japan, 1992, 65, 2724-2728.	3.2	31
28	pH measurement in the vicinity of a cathode evolving hydrogen gas using an antimony microelectrode. Journal of Applied Electrochemistry, 1998, 28, 617-622.	2.9	31
29	Frequency Modulation Atomic Force Microscopy in Ionic Liquid Using Quartz Tuning Fork Sensors. Japanese Journal of Applied Physics, 2012, 51, 08KB08.	1.5	31
30	Drastic Change in Electrical Properties of Electrodeposited ZnO: Systematic Study by Hall Effect Measurements. Journal of Physical Chemistry C, 2012, 116, 15925-15931.	3.1	31
31	Photoassisted Electrodeposition of CdTe Layer from Ammoniacal Basic Aqueous Solutions. Journal of the Electrochemical Society, 2003, 150, C44.	2.9	30
32	Site-Selective Assembly and Reorganization of Gold Nanoparticles along Aminosilane-Covered Nanolines Prepared on Indium–Tin Oxide. Langmuir, 2012, 28, 7579-7584.	3.5	30
33	Mutual separation characteristics for the yttrium and lanthanides with chemical vapor transport process mediated by metal chloride gaseous complexes. Journal of Alloys and Compounds, 1998, 265, 125-131.	5.5	28
34	Characterization of Transparent Ferromagnetic Fe:ZnO Semiconductor Films Chemically Prepared from Aqueous Solutions. Journal of the Electrochemical Society, 2005, 152, G736.	2.9	28
35	Redox and transport behaviors of Cu(I) ions in TMHA-Tf2N ionic liquid solution. Journal of Applied Electrochemistry, 2007, 37, 339-344.	2.9	28
36	Surface Chemical Conversion of Organosilane Self-Assembled Monolayers with Active Oxygen Species Generated by Vacuum Ultraviolet Irradiation of Atmospheric Oxygen Molecules. Japanese Journal of Applied Physics, 2008, 47, 307.	1.5	28

#	Article	IF	CITATIONS
37	Regulation of Pattern Dimension as a Function of Vacuum Pressure: Alkyl Monolayer Lithography. Langmuir, 2008, 24, 12077-12084.	3.5	25
38	Microstructure and Electronic Structure of Transparent Ferromagnetic ZnOâ^'Spinel Iron Oxide Composite Films. Chemistry of Materials, 2006, 18, 763-770.	6.7	24
39	Formation of Cu-Sn Alloy Layer by Contact Deposition Using Quaternary Ammonium-Imide-Type Ionic Liquid. Electrochemical and Solid-State Letters, 2006, 9, C69.	2.2	23
40	High-Rate Charging of Zinc Anodes Achieved by Tuning Hydration Properties of Zinc Complexes in Water Confined within Nanopores. Journal of Physical Chemistry C, 2016, 120, 24112-24120.	3.1	23
41	Recovery of Rare Metals from the Sludge of Samarium-Cobalt Magnetic Alloy by a Chemical Vapor Transporting Method. Chemistry Letters, 1992, 21, 1555-1558.	1.3	22
42	Vapor phase extraction and separation of rare earths from bastnaesite concentrate mediated by vapor complexes. Journal of Alloys and Compounds, 1996, 245, 10-14.	5.5	22
43	Determination of Chemical Species and Their Composition in Niâ€Mo Alloy Plating Baths by Factor Analysis of Visible Absorption Spectra. Journal of the Electrochemical Society, 1998, 145, 523-528.	2.9	22
44	Self-Assembly Guided One-Dimensional Arrangement of Gold Nanoparticles: A Facile Approach. Journal of Physical Chemistry C, 2008, 112, 16182-16185.	3.1	22
45	Anionic effect of ionic liquids electrolyte on electrochemical behavior of ferrocenylthiol/alkanethiol binary SAMs. Journal of Electroanalytical Chemistry, 2010, 643, 58-66.	3.8	22
46	Vapor Phase Extraction and Mutual Separation of Rare Earths from Monazite Using Chemical Vapor Transport Mediated by Vapor Complexes. Chemistry Letters, 1994, 23, 1297-1300.	1.3	21
47	Recovery of vanadium, nickel and magnesium from a fly ash of bitumen-in-water emulsion by chlorination and chemical transport. Journal of Alloys and Compounds, 1998, 264, 151-156.	5.5	21
48	Electrodeposition of CdTe from Basic Aqueous Solutions Containing Ethylenediamine. Journal of the Electrochemical Society, 2001, 148, C203.	2.9	20
49	Comparison of Microstructures of CdTe Layers Electrodeposited from Basic Ammoniacal and Acidic Sulfate Electrolytes. Journal of the Electrochemical Society, 2004, 151, C168.	2.9	20
50	Organic Monolayers Covalently Bonded to Si as Ultra Thin Photoresist Films in Vacuum UV Lithography. Japanese Journal of Applied Physics, 2006, 45, 5456-5460.	1.5	20
51	Lithiation behavior of single-phase Cu–Sn intermetallics and effects on their negative-electrode properties. Electrochimica Acta, 2013, 98, 239-243.	5.2	20
52	Photochemical Assembly of Gold Nanoparticle Arrays Covalently Attached to Silicon Surface Assisted by Localized Plasmon in the Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 2480-2485.	3.1	20
53	Mutual Separation of Mixed Praseodymium and Neodymium Oxides via Metal Halide Gaseous Complexes. Industrial & Engineering Chemistry Research, 1995, 34, 3963-3969.	3.7	19
54	Mass Spectrometric Investigation of the Vapor over the LnCl3–KCl Equimolar Melt (Ln = Nd, Er) at High Temperatures. Bulletin of the Chemical Society of Japan, 1996, 69, 353-357.	3.2	19

#	Article	IF	CITATIONS
55	Design of Acidic Ni-Mo Alloy Plating Baths Using a Set of Apparent Equilibrium Constants. Journal of the Electrochemical Society, 2004, 151, C798.	2.9	19
56	Determination of Stability Constants of Copper(II)–Lactate Complexes in Cu ₂ O Electrodeposition Baths by UV-vis Absorption Spectra Factor Analysis. Journal of the Electrochemical Society, 2019, 166, D761-D767.	2.9	18
57	Molecular packing density of a self-assembled monolayer formed from N-(2-aminoethyl)-3-aminopropyltriethoxysilane by a vapor phase process. Chemical Communications, 2011, 47, 8841.	4.1	17
58	Visualization of Ionic-Liquid/Solid Interfaces by Frequency Modulation Atomic Force Microscopy. ECS Transactions, 2013, 50, 349-355.	0.5	17
59	Electrochemical Reactivity of Magnesium Ions with Sn-Based Binary Alloys (Cu-Sn, Pb-Sn, and In-Sn). ECS Transactions, 2014, 58, 75-80.	0.5	17
60	Crystalline chromium electroplating with high current efficiency using chloride hydrate melt-based trivalent chromium baths. Electrochimica Acta, 2020, 338, 135873.	5.2	17
61	Effects of Counteranions and Dissolved Oxygen on Chemical ZnO Deposition from Aqueous Solutions. Journal of the Electrochemical Society, 2009, 156, H320.	2.9	16
62	Formation of uniform ferrocenyl-terminated monolayer covalently bonded to Si using reaction of hydrogen-terminated Si(1 1 1) surface with vinylferrocene/n-decane solution by visible-light excitation. Journal of Colloid and Interface Science, 2011, 361, 259-269.	9.4	16
63	Preparation of Cu-Sn Layers on Polymer Substrate by Reduction-Diffusion Method Using Ionic Liquid Baths. Journal of the Electrochemical Society, 2011, 158, D335.	2.9	16
64	Identification of Copper(II)–Lactate Complexes in Cu ₂ O Electrodeposition Baths: Deprotonation of the α-Hydroxyl Group in Highly Concentrated Alkaline Solution. Journal of the Electrochemical Society, 2018, 165, D444-D451.	2.9	16
65	Spontaneous Symmetry Breaking of Nanoscale Spatiotemporal Pattern as the Origin of Helical Nanopore Etching in Silicon. ACS Applied Materials & Interfaces, 2019, 11, 48604-48611.	8.0	16
66	Water Content and Properties of Aliphatic Ammonium Imide-Type Room Temperature Ionic Liquid Containing Metal Ions. Electrochemistry, 2005, 73, 686-691.	1.4	16
67	Water content and related physical properties of aliphatic quaternary ammonium imide-type ionic liquid containing metal ions. Science and Technology of Advanced Materials, 2006, 7, 502-510.	6.1	15
68	Electrochemical Alloying of Copper Substrate with Tin Using Ionic Liquid as an Electrolyte at Medium-Low Temperatures. Journal of the Electrochemical Society, 2007, 154, D612.	2.9	15
69	Electrodeposition of an iron thin film with compact and smooth morphology using an ethereal electrolyte. Electrochimica Acta, 2020, 348, 136289.	5.2	15
70	Electrochemical Polishing of Metallic Titanium in Ionic Liquid. Materials Transactions, 2011, 52, 2061-2066.	1.2	14
71	Penetration of Platinum Complex Anions into Porous Silicon: Anomalous Behavior Caused by Surface-Induced Phase Transition. Journal of Physical Chemistry C, 2015, 119, 19105-19116.	3.1	14
72	Irradiation-induced point defects enhance the electrochemical activity of 3C-SiC: An origin of SiC corrosion. Electrochemistry Communications, 2018, 91, 15-18.	4.7	14

#	Article	IF	CITATIONS
73	Effect of Ammonia Concentration on Electrodeposition of CdTe from Ammonia-alkaline Solutions Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 1999, 50, 367-373.	0.2	13
74	QCM Studies of Chemical Solution Deposition of ZnO in Aqueous Media Containing Zinc Nitrate and Dimethylamineborane. Journal of the Electrochemical Society, 2006, 153, C735.	2.9	13
75	A Hydronium Solvate Ionic Liquid: Facile Synthesis of Air-Stable Ionic Liquid with Strong BrÃ,nsted Acidity. Journal of the Electrochemical Society, 2018, 165, H121-H127.	2.9	13
76	Cyanide-Free Displacement Silver Plating Using Highly Concentrated Aqueous Solutions of Metal Chloride Salts. Journal of the Electrochemical Society, 2019, 166, D409-D414.	2.9	13
77	Raman spectra of liquids and glasses in the RCl3î—,AlCl3 (Rî—»Nd, Gd) systems. Journal of Non-Crystalline Solids, 1994, 180, 88-90.	3.1	12
78	Self-assembled Multilayer Formed by Alternate Stacking of Zirconium and Terephthalic Acid Layers. Chemistry Letters, 2006, 35, 1392-1393.	1.3	12
79	Alkanethiol Self-Assembled Monolayers Formed on Silicon Substrates. Japanese Journal of Applied Physics, 2010, 49, 01AE09.	1.5	12
80	Enhanced Anodic Dissolution of Magnesium in Quaternary-Ammonium-Based Ionic Liquid Containing a Small Amount of Water. Journal of the Electrochemical Society, 2013, 160, D453-D458.	2.9	12
81	A Concentrated AlCl ₃ –Diglyme Electrolyte for Hard and Corrosion-Resistant Aluminum Electrodeposits. ACS Applied Materials & Interfaces, 2020, 12, 43289-43298.	8.0	12
82	Alternating Pulsed Electrolysis for Iron-Chromium Alloy Coatings with Continuous Composition Gradient. Journal of the Electrochemical Society, 2007, 154, D304.	2.9	11
83	Spatially Controlled Functionalization and Chemical Manipulation to Fabricate Two-Dimensional Arrays of Gold Nanoparticles onto Indium Tin Oxide. Japanese Journal of Applied Physics, 2008, 47, 5048-5052.	1.5	11
84	Organosilane self-assembled multilayer formation based on activation of methyl-terminated surface with reactive oxygen species generated by vacuum ultra-violet excitation of atmospheric oxygen molecules. Applied Surface Science, 2009, 256, 1507-1513.	6.1	11
85	Electrodeposition of CdTe from Basic Aqueous Solutions Containing Diethylenetriamine Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2002, 53, 535-543.	0.2	10
86	Galvanic Contact Deposition of CdTe Layers Using Ammoniacal Basic Aqueous Solution. Journal of the Electrochemical Society, 2005, 152, C237.	2.9	10
87	Effect of Chloride Ions on Electrodeposition of CdTe from Ammoniacal Basic Electrolytes. Journal of the Electrochemical Society, 2006, 153, C121.	2.9	10
88	Gold Nanoparticle Arrays Fabricated on a Silicon Substrate Covered with a Covalently Bonded Alkyl Monolayer by Electroless Plating Combined with Scanning Probe Anodization Lithography. Journal of Physical Chemistry C, 2009, 113, 11643-11646.	3.1	10
89	UV induced covalent assembly of gold nanoparticles in linear patterns on oxide free silicon surface. Journal of Materials Chemistry, 2012, 22, 16546.	6.7	10
90	Effect of cation species on surface-induced phase transition observed for platinum complex anions in platinum electrodeposition using nanoporous silicon. Journal of Chemical Physics, 2014, 141, 074701.	3.0	10

#	Article	IF	CITATIONS
91	Accelerated growth from amorphous clusters to metallic nanoparticles observed in electrochemical deposition of platinum within nanopores of porous silicon. Electrochemistry Communications, 2016, 71, 9-12.	4.7	10
92	Room Temperature Electrodeposition of Flat and Smooth Aluminum Layers from An AlCl ₃ /diglyme Bath. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2018, 69, 310-311.	0.2	10
93	Effect of anions on electrodeposition of CdTe from ammoniacal basic solutions. Surface and Coatings Technology, 2003, 169-170, 108-111.	4.8	9
94	Scanning probe anodization patterning of Si substrates covered with a self-assembled monolayer dependent on surface hydrophilicity. Journal of Vacuum Science & Technology B, 2009, 27, 928.	1.3	9
95	Potentiostatic Cu-Zn Alloying for Polymer Metallization Using Medium-Low Temperature Ionic Liquid Baths. Journal of the Electrochemical Society, 2013, 160, D417-D421.	2.9	9
96	True Molecular-resolution Imaging on Alkanethiol Self-assembled Monolayers in Ionic Liquids by Frequency Modulation Atomic Force Microscopy Utilizing a Quartz Tuning Fork Sensor. Chemistry Letters, 2015, 44, 459-461.	1.3	9
97	Macroporous SiC Formation in Anodizing Triggered by Irradiation-Induced Lattice Defects. Journal of Physical Chemistry C, 2020, 124, 11032-11039.	3.1	9
98	Electrodeposition of a CoNiCu medium-entropy alloy in a water-in-oil emulsion. Electrochemistry Communications, 2021, 128, 107057.	4.7	9
99	Photo-assisted Electrodeposition of CdTe Semiconductor from Ammoniacal Alkaline Aqueous Solutions. Electrochemistry, 1999, 67, 331-335.	1.4	9
100	Electrochemical QCM Studies of CdTe Formation and Dissolution in Ammoniacal Basic Aqueous Electrolytes. Journal of the Electrochemical Society, 2005, 152, C304.	2.9	8
101	Galvanic contact deposition of CdTe from ammoniacal basic electrolytes at elevated temperatures using an autoclave-type electrolysis vessel. Electrochemistry Communications, 2006, 8, 605-609.	4.7	8
102	Studies of oxidation behaviors of CdTe in ammoniacal basic electrolytes. Electrochimica Acta, 2006, 51, 4987-4993.	5.2	8
103	Alternate stacking of transition metal ions and terephthalic acid molecules for the fabrication of self-assembled multilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 249-253.	4.7	8
104	Sustainable Electrodeposition of ZnO by a Galvanic Contact Method. Electrochemical and Solid-State Letters, 2009, 12, D72.	2.2	8
105	Covalent assembly of silver nanoparticles on hydrogen-terminated silicon surface. Journal of Colloid and Interface Science, 2012, 382, 22-27.	9.4	8
106	Structural Analysis of Ionic-liquid/Organic-monolayer Interface by Phase Modulation Atomic Force Microscopy Utilizing a Quartz Tuning Fork Sensor. Electrochemistry, 2014, 82, 380-384.	1.4	8
107	A Hydronium Solvate Ionic Liquid: Ligand Exchange Conduction Driven by Labile Solvation. Journal of the Electrochemical Society, 2018, 165, H496-H499.	2.9	8
108	Common mechanism for helical nanotube formation by anodic polymerization and by cathodic deposition using helical pores on silicon electrodes. Electrochemistry Communications, 2020, 114, 106714.	4.7	8

#	Article	IF	CITATIONS
109	Evidence for the Diffusion of Au Atoms into the Te UPD Layer Formed on a Au(111) Substrate. Journal of the Electrochemical Society, 2002, 149, C83.	2.9	7
110	Electroless Nickel Plating onto Minute Patterns of Copper Using Ti(IV)â^•Ti(III) Redox Couple. Journal of the Electrochemical Society, 2005, 152, C588.	2.9	7
111	Soft processing for formation of self-assembled monolayer on hydrogen-terminated silicon surface based on visible-light excitation. Journal of Vacuum Science & Technology B, 2009, 27, 858-862.	1.3	7
112	Activation of Cyclo-Olefine Polymer Surface for the Promotion of Palladium Adsorption Based on the Oxygen-Amprified Vacuum Ultra-Violet Process. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2013, 64, 662-668.	0.2	7
113	An Ionic Liquid State Composed of Superoxide Radical Anions and Crownether-Coordinated Potassium Cations. Journal of the Electrochemical Society, 2017, 164, H5119-H5123.	2.9	7
114	Dispersion of multiwalled carbon nanotubes into a diglyme solution, electrodeposition of aluminum-based composite, and improvement of hardness. Journal of Alloys and Compounds, 2020, 816, 152585.	5.5	7
115	Ligand Exchange Conduction of Lithium Ion in a Pentaglyme-Lithium Bis(trifluoromethylsulfonyl)amide Super-Concentrated Electrolyte. Journal of the Electrochemical Society, 2021, 168, 016506.	2.9	7
116	Suppression of Silver Dissolution by Contacting Different Metals during Copper Electrorefining. Journal of MMIJ, 2014, 130, 65-69.	0.3	7
117	Measurement of pH in the vicinity of a cathode during the chloride electrowinning of nickel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1998, 29, 1193-1198.	2.1	6
118	Thermal Phase Transformation of ZnO-Based Transparent Ferromagnetic Composite Films and the Change in Magnetic Characteristics. Journal of the Electrochemical Society, 2006, 153, G168.	2.9	6
119	Scanning Capacitance Microscopy for Alkylsilane-Monolayer-Covered Si Substrate Patterned by Scanning Probe Lithography. Japanese Journal of Applied Physics, 2007, 46, 5621.	1.5	6
120	Reduced Consumption of Glue and Electric Power by Continuous Glue Dissolution System Installed at The Tamano Refinery. Journal of MMIJ, 2012, 128, 155-159.	0.3	6
121	Lateral Growth of Polypyrrole Electropolymerized along Hydrophobic Insulative Substrates. ECS Electrochemistry Letters, 2014, 3, G5-G7.	1.9	6
122	Spontaneous Formation of Microgroove Arrays on the Surface of pâ€Type Porous Silicon Induced by a Turing Instability in Electrochemical Dissolution. ChemPhysChem, 2015, 16, 1613-1618.	2.1	6
123	Dynamic manipulation of the local pH within a nanopore triggered by surface-induced phase transition. Physical Chemistry Chemical Physics, 2017, 19, 16323-16328.	2.8	6
124	Mechanism of Accelerated Zinc Electrodeposition in Confined Nanopores, Revealed by X-ray Absorption Fine Structure Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 18047-18056.	3.1	6
125	Analytical TEM Study of CdTe Layer Electrodeposited from Basic Ammoniacal Aqueous Electrolyte. Journal of the Electrochemical Society, 2004, 151, C712.	2.9	5
126	Transparent Ferromagnetic Semiconductor Fe-Zn-O Heterogranular Films. Electrochemical and Solid-State Letters, 2004, 7, G235.	2.2	5

#	Article	IF	CITATIONS
127	Atomic and Electronic Structures of Hydrated Polymolybdates by First Principles Calculations. Materials Transactions, 2004, 45, 1982-1986.	1.2	5
128	Fe-Cr Alloying of Iron Surface by Asymmetric Alternating Pulsed Electrolysis Using Trivalent Chromium Solution. Electrochemical and Solid-State Letters, 2006, 9, B32.	2.2	5
129	Reversible Potential Change of Ferrocenylthiol Monolayers Induced by Atomic Force Microscopy. Japanese Journal of Applied Physics, 2009, 48, 08JB15.	1.5	5
130	Cu-Sn Alloy Metallization of Polymer Substrate through Reduction-Diffusion Method Using Ionic Liquid Bath at Medium-Low Temperatures. Electrochemistry, 2009, 77, 677-679.	1.4	5
131	Nanotemplate Prepared by Means of Vacuum Ultraviolet Patterning of Alkylsilane Self-assembled Monolayer on ITO Using a Porous Alumina Mask: Application to the Fabrication of Gold Nanoparticle Arrays. Chemistry Letters, 2012, 41, 392-393.	1.3	5
132	Use of Diode Analogy in Explaining the Voltammetric Characteristics of Immobilized Ferrocenyl Moieties on a Silicon Surface. ChemElectroChem, 2015, 2, 68-72.	3.4	5
133	FEM Simulation of Nodulation in Copper Electro-refining. Minerals, Metals and Materials Series, 2018, , 215-222.	0.4	5
134	Suppression of Fast Proton Conduction by Dilution of a Hydronium Solvate Ionic Liquid: Localization of Ligand Exchange. Journal of the Electrochemical Society, 2020, 167, 046508.	2.9	5
135	Recovery of Nickel and Vanadium from a Fly Ash of Bitumen-in-Water Emulsion by Chemical Vapor Transport. Chemistry Letters, 1994, 23, 1845-1848.	1.3	4
136	The Structure of Poly-Molybdate Ions and It's Relevance to the Electroplating of Molybdenum Alloy Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 1998, 49, 1115-1121.	0.2	4
137	Ruthenium–amine complexation for constructing self-assembled molecular films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 94-98.	4.7	4
138	Anodic Dissolution Behavior of Magnesium in Hydrophobic Ionic Liquids. ECS Transactions, 2011, 33, 65-70.	0.5	4
139	Self-aligned nucleation of gold onto templates with a nano-scale precision fabricated by scanning probe lithography. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 209-213.	3.9	4
140	Photochemical Preparation of Methyl-terminated Si(111) Surface Using a Grignard Reagent. Chemistry Letters, 2012, 41, 902-904.	1.3	4
141	Vinylferrocene Photochemical Preparation on Si(111) Surface in Different Grafting Media. Chemistry Letters, 2012, 41, 1188-1190.	1.3	4
142	Experimental Modeling of Nodulation in Copper Electrorefining. Minerals, Metals and Materials Series, 2018, , 319-323.	0.4	4
143	Black-colored Metallic Aluminum Obtained by Electrolytic Etching in a Highly Concentrated LiTf ₂ N Aqueous Solution. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2020, 71, 376-378.	0.2	4
144	Influence of Chloride Ions on Quality and Mechanical Properties of Electrodeposited Copper in Copper Electrorefining. Journal of MMIJ, 2013, 129, 72-77.	0.3	4

#	Article	IF	CITATIONS
145	Enhancement of Oxidation of Silicon Carbide Originating from Stacking Faults Formed by Mode-Selective Phonon Excitation Using a Mid-Infrared Free Electron Laser. Journal of Physical Chemistry Letters, 2022, 13, 2956-2962.	4.6	4
146	Electrodeposition Behavior of Dendritic Copper from Aqueous Copper (I) Chloride Solution Containing Condensed Sodium Halides. Shigen-to-Sozai, 2005, 121, 103-110.	0.1	3
147	Electrochemical Behavior of Ferrocenylthiol / Alkanethiol Binary SAM in Ionic Liquids. ECS Transactions, 2009, 16, 575-581.	0.5	3
148	Potentiostatic Cu-Zn Alloying for Polymer Metallization Using Medium-Low Temperature Ionic Liquid Baths. ECS Transactions, 2010, 33, 515-521.	0.5	3
149	Self-alignment of Gold Nanoparticles through the Control of Particle-substrate and Particle-particle Interactions. Procedia Engineering, 2012, 36, 374-381.	1.2	3
150	Circular Arrays of Gold Nanoparticles of a Single Particle Line Thickness Formed on Indium Tin Oxide. Applied Physics Express, 2012, 5, 025202.	2.4	3
151	Photochemical grafting of methyl groups on a Si(111) surface using a Grignard reagent. Journal of Colloid and Interface Science, 2013, 411, 145-151.	9.4	3
152	Redox of ferrocenylthiol SAMs in electrolytes with bis[(trifluoromethyl)sulfonyl]amide as unique anions: Parallel between aqueous and ionic liquid media. Journal of Electroanalytical Chemistry, 2017, 795, 75-80.	3.8	3
153	Proton conduction in hydronium solvate ionic liquids affected by ligand shape. Physical Chemistry Chemical Physics, 2021, 23, 449-456.	2.8	3
154	Glyme-Lithium Bis(trifluoromethylsulfonyl)amide Super-concentrated Electrolytes: Salt Addition to Solvate Ionic Liquids Lowers Ionicity but Liberates Lithium Ions. Journal of the Electrochemical Society, 2021, 168, 090521.	2.9	3
155	Basal-Plane Orientation of Zn Electrodeposits Induced by Loss of Free Water in Concentrated Aqueous Solutions. Journal of the Electrochemical Society, 2020, 167, 162511.	2.9	3
156	High-density and low-roughness anodic oxide formed on SiC in highly concentrated LiCl aqueous solution. Electrochemistry Communications, 2021, 132, 107138.	4.7	3
157	Lamination Interface of the Wax-Less Permanent Cathode Process in Copper Refinery. Journal of MMIJ, 2010, 126, 697-700.	0.3	3
158	Hard Trivalent Chromium Plating from a Concentrated Calcium Chloride Aqueous Solution. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2020, 71, 815-820.	0.2	3
159	Plasma Nitriding Characteristics of Sm2Fe17Nx. Chemistry Letters, 1992, 21, 1243-1246.	1.3	2
160	Electrodeposition of CdTe Semiconductor Layers from Basic Ammoniacal Aqueous Solutions — Thermodynamics, Morphology, and Electrical Properties. High Temperature Materials and Processes, 2004, 23, 383-398.	1.4	2
161	Structural and Electrical Characterizations of Electrodeposited p-Type Semiconductor Cu2O Films ChemInform, 2005, 36, no.	0.0	2
162	Microstructures and MR effects of transparent ferromagnetic chemically prepared Fe-Zn-O films. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2760-2764.	1.8	2

#	Article	lF	CITATIONS
163	Faster Growth of Cu-Sn Layers Through Reduction-Diffusion Method Using Ionic Liquid Bath at Medium-Low Temperatures. ECS Transactions, 2007, 11, 103-109.	0.5	2
164	Probing the diffusion of vacuum ultraviolet (λ=172nm) induced oxidants by nanoparticles immobilization. Applied Surface Science, 2009, 255, 9817-9821.	6.1	2
165	Thermodynamics of Cathodic ZnTe Electrodeposition Using Basic Ammoniacal Electrolytes: Why CdTe Can Deposit While ZnTe Cannot. High Temperature Materials and Processes, 2011, 30, .	1.4	2
166	Unexpected Downstream Mode of Spatiotemporal Rotating Waves Found in the Model of H2O2 Reduction on a Platinum Ring-Shaped Electrode under Mild Convection. Journal of Physical Chemistry C, 2021, 125, 7240-7250.	3.1	2
167	Thermodynamic Design of Electrolyte for CuO/Cu2O Bilayer by Anodic Electrodeposition. Journal of the Electrochemical Society, 0, , .	2.9	2
168	The Mechanism of Nodular Growth in Copper Electrorefining. Journal of MMIJ, 2020, 136, 8-13.	0.3	2
169	Displacement Deposition Behavior of Copper via Oxidative Dissolution of TiN Thin Film Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2001, 52, 773-777.	0.2	1
170	æ¹¿å¼æ³•ã«ã,~ã,‹å¤™½é›»æ±ç""CdTeè–"è†œææ–™ã®ä½œè£½. Hyomen Gijutsu/Journal of the Surface Fini	shi o g:Soci	ety of Japan,
171	é›»ä¼zɨ¼pH図ã,'ä½zã£ã┥åŠå°Žä½"é›»æžã,'è§£é‡^ã™ã,‹ ~CdTeé›»æžã,'例ã«ï½zž. Hyomen Gijutsu/Journal	of the Sur	face Finishing
172	Electrodeposition of CdTe from Acidic Aqueous Solutions Containing Citric Acid. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2004, 55, 360-365.	0.2	1
173	Electrolytic Preparation and Properties of Composite Ni-Mo Alloy Coatings Containing TiO2 Particles. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2005, 56, 692-697.	0.2	1
174	Effect of Chloride Ions on the Electrodeposition Behavior of CdTe from Ammoniacal Basic Electrolytes. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2006, 57, 70-76.	0.2	1
175	Multicycle Desorption-Adsorption Voltammetry for Self-Assembled Mixed Monolayer Containing Ferrocenylthiol Molecules: A Discussion on Molecular Interaction in the Mixed Layer. Electrochemistry, 2007, 75, 523-527.	1.4	1
176	Electrochemical Iron-Chromium Alloying of Carbon Steel Surface Using Alternating Pulsed Electrolysis. Materials Transactions, 2008, 49, 1346-1354.	1.2	1
177	Quest for Ether-Coordinated Superoxide Ionic Liquids. ECS Transactions, 2014, 64, 21-25.	0.5	1
178	Solubility and Stability of Superoxide Radical Anions in Room-Temperature Ionic Liquids. ECS Transactions, 2014, 58, 33-37.	0.5	1
179	An lonic Liquid Consisting of Crown Ether - Coordinated Hydronium Cation and Amide Anion. ECS Transactions, 2016, 75, 239-244.	0.5	1
180	Cathodic polarization behavior in an aqueous solution containing Co(II) and Tb(III): Comparison between flat and nanoporous electrodes. Electrochimica Acta, 2019, 309, 339-345.	5.2	1

#	Article	IF	CITATIONS
181	An Ammonium Solvate Ionic Liquid. Journal of the Electrochemical Society, 2021, 168, 026515.	2.9	1
182	Aging Variation of Magnesium Redox Properties in Ionic Liquid-Grignard Reagent Mixed Electrolytes. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2019, 70, 210-214.	0.2	1
183	Brightness Grade of Silver Electroplating Estimated by Polarization Measurements of Baths. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2020, 71, 642-644.	0.2	1
184	Lead Electrodeposition from Highly Concentrated Calcium Chloride Aqueous Solutions. Journal of MMIJ, 2021, 137, 103-109.	0.3	1
185	Recovery of Scandium from Sulfuric Acid Aqueous Solutions using Ion-Exchange Resin. Journal of MMIJ, 2022, 138, 51-59.	0.3	1
186	Behavior and Thermodynamic Consideration of Displacement Deposition of Copper and Palladium onto Titanium Nitride. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2005, 56, 145-150.	0.2	0
187	NO Decomposition using Structure-Changed Titanium Oxides by Mechanical Milling. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 686-693.	0.2	0
188	Visible Light-Induced Immobilization of Gold Nanoparticles on Silicon Substrates. ECS Transactions, 2013, 50, 137-143.	0.5	0
189	Vinylferrocene-Terminated Si(111) Prepared in Diethyl Ether and Dibutyl Ether Grafting Media. ECS Transactions, 2013, 50, 37-46.	0.5	0
190	(Invited) Electrodeposition in Microporous Silicon from the Viewpoint of Hydration Property: Effect of Coexisting Ions in Zinc Electrodeposition. ECS Transactions, 2015, 69, 15-21.	0.5	0
191	Reactivity of Zinc Cations under Spontaneous Accumulation of Hydrophobic Coexisting Cations in Hydrophobic Nanoporous Silicon. ACS Omega, 2020, 5, 26894-26901.	3.5	0
192	Microstructures of CdTe Semiconductor Layers Electrodeposited from Basic and Acidic Aqueous Solutions. Materia Japan, 2003, 42, 907-907.	0.1	0
193	Electroless Plating of Cobalt Containing Tungsten Using Hydrazine as a Reducing Agent. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2004, 55, 565-567.	0.2	0
194	Extended Brewer thermodynamic basis of facilitated thermal hypo-hyper-d-intermetallic phase formation. Chemical Industry and Chemical Engineering Quarterly, 2005, 11, 156-159.	0.7	0
195	Electrodeposition of Dendritic Copper on Copper or Titanium Electrode from Aqueous Copper(I) Chloride Solution Containing Condensed Sodium Halides. Shigen-to-Sozai, 2006, 122, 21-25.	0.1	0
196	Hydronium bis(trifluoromethanesulfonyl)amide–18-crown-6 (1/1). IUCrData, 2020, 5, .	0.3	0
197	Will Concentrated Aqueous Solutions Change Surface Finishing?. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2020, 71, 723-728.	0.2	0