Pedro Ivo Cunha Claro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6015505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodegradability and nutrients release of thermoplastic starch and poly (Îμ-caprolactone) blends for agricultural uses. Carbohydrate Polymers, 2022, 282, 119058.	5.1	7
2	Biodegradable blends of thermoplastic waxy starch and poly(Îμ-caprolactone) obtained by high shear extrusion: Rheological, mechanical, morphological and thermal properties. Journal of Polymer Research, 2022, 29, .	1.2	0
3	Ionic Conductive Cellulose Mats by Solution Blow Spinning as Substrate and a Dielectric Interstrate Layer for Flexible Electronics. ACS Applied Materials & Interfaces, 2021, 13, 26237-26246.	4.0	16
4	Annealing and crystallization kinetics of poly(lactic acid) pieces obtained by additive manufacturing. Polymer Engineering and Science, 2021, 61, 2097-2104.	1.5	9
5	Tuning the Electrical Properties of Cellulose Nanocrystals through Laser-Induced Graphitization for UV Photodetectors. ACS Applied Nano Materials, 2021, 4, 8262-8272.	2.4	23
6	Cellulose nanocrystals from curaua fibers and poly[ethyleneâ€≺scp> <i>co</i> â€(vinyl acetate)] nanocomposites: Effect of drying process of CNCs on thermal and mechanical properties. Polymer Composites, 2020, 41, 1736-1748.	2.3	14
7	Enzymatic Deconstruction of Sugarcane Bagasse and Straw to Obtain Cellulose Nanomaterials. ACS Sustainable Chemistry and Engineering, 2020, 8, 2287-2299.	3.2	107
8	Enhancement of the Amazonian AçaÃ-Waste Fibers through Variations of Alkali Pretreatment Parameters. Chemistry and Biodiversity, 2019, 16, e1900275.	1.0	7
9	Curaua cellulose sheets dip coated with micro and nano carnauba wax emulsions. Cellulose, 2019, 26, 7983-7993.	2.4	28
10	2,4-Dichlorophenoxyacetic acid adsorption on montmorillonite organoclay for controlled release applications. SN Applied Sciences, 2019, 1, 1.	1.5	12
11	Curaua and eucalyptus nanofiber films by continuous casting: mixture of cellulose nanocrystals and nanofibrils. Cellulose, 2019, 26, 2453-2470.	2.4	24
12	Processing, Characterization and Application of Micro and Nanocellulose Based Environmentally Friendly Polymer Composites. , 2019, , 1-35.		5
13	In vitro growth of Physalis peruviana L. affected by silver nanoparticles. 3 Biotech, 2019, 9, 145.	1.1	15
14	Thermoplastic starch/whey protein isolate/rosemary essential oil nanocomposites obtained by extrusion process: Antioxidant polymers. Journal of Applied Polymer Science, 2019, 136, 47619.	1.3	24
15	Silver nanoparticles in the micropropagation of Campomanesia rufa (O. Berg) Nied. Plant Cell, Tissue and Organ Culture, 2019, 137, 359-368.	1.2	22
16	CELLULOSE NANOFIBRILS MODIFICATION WITH POLYANILINE AIMING AT ENHANCING ELECTRICAL PROPERTIES FOR APPLICATION IN FLEXIBLE ELECTRONICS. Cellulose Chemistry and Technology, 2019, 53, 775-786.	0.5	6
17	Urea Formaldehyde and Cellulose Nanocrystals Adhesive: Studies Applied to Sugarcane Bagasse Particleboards. Journal of Polymers and the Environment, 2018, 26, 3040-3050.	2.4	21
18	Curaua and eucalyptus nanofibers films by continuous casting: Mechanical and thermal properties. Carbohydrate Polymers, 2018, 181, 1093-1101.	5.1	26

#	Article	IF	CITATIONS
19	Poly(lactic acid) composites reinforced with leaf fibers from ornamental variety of hybrid pineapple (<scp>P</scp> otyra). Polymer Composites, 2018, 39, 4050-4057.	2.3	5
20	The effect of surface modifications with corona discharge in pinus and eucalyptus nanofibril films. Cellulose, 2018, 25, 5017-5033.	2.4	15
21	Thermoplastic Waxy Starch Films Processed by Extrusion and Pressing: Effect of Glycerol and Water Concentration. Materials Research, 2017, 20, 353-357.	0.6	11
22	Biodegradable Blends with Potential Use in Packaging: A Comparison of PLA/Chitosan and PLA/Cellulose Acetate Films. Journal of Polymers and the Environment, 2016, 24, 363-371.	2.4	81
23	Cellulose nanostructured films from pretreated açaÃ-mesocarp fibers: physical, barrier, and tensile performance. Cerne, 0, 27, .	0.9	4