Andrew S Merdith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6015459/publications.pdf

Version: 2024-02-01

567144 580701 1,167 25 15 25 citations h-index g-index papers 33 33 33 951 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A full-plate global reconstruction of the Neoproterozoic. Gondwana Research, 2017, 50, 84-134.	3.0	474
2	Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic. Earth-Science Reviews, 2021, 214, 103477.	4.0	183
3	Rift and plate boundary evolution across two supercontinent cycles. Global and Planetary Change, 2019, 173, 1-14.	1.6	70
4	Kinematic constraints on the Rodinia to Gondwana transition. Precambrian Research, 2017, 299, 132-150.	1.2	59
5	Evolution of Earth's tectonic carbon conveyor belt. Nature, 2022, 605, 629-639.	13.7	43
6	Global chemical weathering dominated by continental arcs since the mid-Palaeozoic. Nature Geoscience, 2021, 14, 690-696.	5.4	40
7	Rodinian devil in disguise: Correlation of 1.25–1.10 Ga strata between Tasmania and Grand Canyon. Geology, 2018, 46, 991-994.	2.0	30
8	Evolving Marginal Terranes During Neoproterozoic Supercontinent Reorganization: Constraints From the Bemarivo Domain in Northern Madagascar. Tectonics, 2019, 38, 2019-2035.	1.3	29
9	Exploring Carbon Mineral Systems: Recent Advances in C Mineral Evolution, Mineral Ecology, and Network Analysis. Frontiers in Earth Science, 2020, 8, .	0.8	29
10	Closure of the Proterozoic Mozambique Ocean was instigated by a late Tonian plate reorganization event. Communications Earth & Environment, 2021, 2, .	2.6	23
11	Neoproterozoic opening of the Pacific Ocean recorded by multi-stage rifting in Tasmania, Australia. Earth-Science Reviews, 2020, 201, 103041.	4.0	21
12	Long-term Phanerozoic sea level change from solid Earth processes. Earth and Planetary Science Letters, 2022, 584, 117451.	1.8	21
13	Assembly of the basal mantle structure beneath Africa. Nature, 2022, 603, 846-851.	13.7	19
14	Tectonic Controls on Carbon and Serpentinite Storage in Subducted Upper Oceanic Lithosphere for the Past 320 Ma. Frontiers in Earth Science, 2019, 7, .	0.8	16
15	A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate–mantle system evolution. Solid Earth, 2022, 13, 1127-1159.	1.2	16
16	Tectonic environments of South American porphyry copper magmatism through time revealed by spatiotemporal data mining. Tectonics, 2016, 35, 2847-2862.	1.3	15
17	Pulsated Global Hydrogen and Methane Flux at Midâ€Ocean Ridges Driven by Pangea Breakup. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008869.	1.0	15
18	Towards a predictive model for opal exploration using a spatio-temporal data mining approach. Australian Journal of Earth Sciences, 2013, 60, 217-229.	0.4	11

#	Article	IF	CITATION
19	Relationships between palaeogeography and opal occurrence in Australia: A data-mining approach. Computers and Geosciences, 2013, 56, 76-82.	2.0	11
20	Palaeolatitudinal distribution of the Ediacaran macrobiota. Journal of the Geological Society, 2022, 179, .	0.9	10
21	Transient mobilization of subcrustal carbon coincident with Palaeocene–Eocene Thermal Maximum. Nature Geoscience, 2022, 15, 573-579.	5.4	8
22	Prospectivity of Western Australian iron ore from geophysical data using a reject option classifier. Ore Geology Reviews, 2015, 71, 761-776.	1.1	7
23	The influence of mantle flow on intracontinental basins: Three examples from Australia. Basin Research, 2021, 33, 1429-1453.	1.3	5
24	Dataset for H ₂ , CH ₄ and organic compounds formation during experimental serpentinization. Geoscience Data Journal, 2021, 8, 90-100.	1.8	4
25	The Arabian–Nubian Shield Within the Neoproterozoic Plate Tectonic Circuit. Regional Geology Reviews, 2021, , 195-202.	1.2	2