Georg Jacobs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6015209/publications.pdf

Version: 2024-02-01

430843 526264 1,342 162 18 27 citations h-index g-index papers 171 171 171 722 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development and validation of a parametric human mandible model to determine internal stresses for the future design optimization of maxillofacial implants. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104893.	3.1	11
2	Accelerated White Etch Cracking (WEC) FE8 type tests of different bearing steels using ceramic rollers. Wear, 2022, 494-495, 204230.	3.1	5
3	Wind turbine drivetrains: state-of-the-art technologies and future development trends. Wind Energy Science, 2022, 7, 387-411.	3.3	44
4	Determining Dynamic Properties of Elastomer-Dampers by Means of Impact Testing. Experimental Mechanics, 2022, 62, 823-836.	2.0	4
5	Function-Oriented Model-Based Product Development. , 2022, , 243-263.		18
6	Method for holistic wind turbine drivetrain comparison exemplarily applied to geared and direct drive systems. Forschung Im Ingenieurwesen/Engineering Research, 2022, 86, 21-33.	1.6	1
7	Sensor Screening Methodology for Virtually Sensing Transmission Input Loads of a Wind Turbine Using Machine Learning Techniques and Drivetrain Simulations. Sensors, 2022, 22, 3659.	3.8	5
8	Investigation of a converter fault for a DFIG wind turbine and analysis of the resulting gearbox component loads. Journal of Physics: Conference Series, 2022, 2257, 012013.	0.4	1
9	Investigation of manufacturing-related deviations of the bearing clearance on the performance of a conical plain bearing for the application as main bearing in a wind turbine. Journal of Physics: Conference Series, 2022, 2257, 012006.	0.4	O
10	Optimization Workflows for Linking Model-Based Systems Engineering (MBSE) and Multidisciplinary Analysis and Optimization (MDAO). Applied Sciences (Switzerland), 2022, 12, 5316.	2.5	8
11	Reduction of gearbox loads of a DFIG wind turbine during grid faults with optimized converter configurations. Journal of Physics: Conference Series, 2022, 2265, 032034.	0.4	1
12	Sensitivity analysis of geometrical design parameters on the performance of conical plain bearings for use as main bearings in wind turbines. Journal of Physics: Conference Series, 2022, 2265, 032010.	0.4	1
13	Simulative Investigation of the Risk of Smearing Damage for a WT Gearbox Roller Bearing during Rotor-Induced Excitations. Wind, 2022, 2, 348-356.	1.5	0
14	Multi-Physical Simulation Toolchain for the Prediction of Acoustic Emissions of Direct Drive Wind Turbines. Journal of Physics: Conference Series, 2022, 2265, 042047.	0.4	1
15	Synthesis and tribological behavior of bio-based lubrication greases with bio-based polyester thickener systems. Journal of Cleaner Production, 2022, 364, 132659.	9.3	10
16	Machine learning based anomaly detection and classification of acoustic emission events for wear monitoring in sliding bearing systems. Tribology International, 2021, 155, 106811.	5.9	68
17	Numerical prediction of the frictional losses in sliding bearings during start-stop operation. Friction, 2021, 9, 583-597.	6.4	10
18	Post-testing measurement of freely movable and diffusible hydrogen in context of WEC formation at cylindrical roller thrust bearings from 100Cr6. Friction, 2021, 9, 876-890.	6.4	6

#	Article	IF	Citations
19	Using SysML to Support Impact Analysis on Structural Dynamics Simulation Models. Procedia CIRP, 2021, 100, 91-96.	1.9	7
20	Future economic perspective and potential revenue of non-subsidized wind turbines in Germany. Wind Energy Science, 2021, 6, 177-190.	3.3	6
21	Damage Diagnosis of Cardan Shafts in Mobile Mining Machines using Vibration Analysis. IOP Conference Series: Materials Science and Engineering, 2021, 1097, 012019.	0.6	2
22	Optimization-based Component Sizing Method for Electrified Heavy-Duty Powertrain Concepts. IOP Conference Series: Materials Science and Engineering, 2021, 1097, 012002.	0.6	2
23	Mechanical concept development using principle solution models. IOP Conference Series: Materials Science and Engineering, 2021, 1097, 012001.	0.6	23
24	Evaluation of Parts for Additive Manufacturing utilizing System Models of AM Plants. IOP Conference Series: Materials Science and Engineering, 2021, 1097, 012022.	0.6	1
25	Acoustic Optimization of a Power Take-off Gear Box Using Numerical Transfer Path Analysis. IOP Conference Series: Materials Science and Engineering, 2021, 1097, 012012.	0.6	3
26	Numerical Transfer Path Analysis for NVH System-Simulation Models. IOP Conference Series: Materials Science and Engineering, 2021, 1097, 012008.	0.6	3
27	Investigation of lubricant supply in rolling point contacts under starved conditions using CFD simulations. IOP Conference Series: Materials Science and Engineering, 2021, 1097, 012007.	0.6	8
28	Model-Based Design Workflows for Cyber-Physical Systems Applied to an Electric-Mechanical Coolant Pump. IOP Conference Series: Materials Science and Engineering, 2021, 1097, 012004.	0.6	22
29	Calculation of structure-borne sound in aÂdirect drive wind turbine. Forschung Im Ingenieurwesen/Engineering Research, 2021, 85, 165-171.	1.6	2
30	Integration of electromagnetic finite element models in aÂmultibody simulation to evaluate vibrations in direct-drive generators. Forschung Im Ingenieurwesen/Engineering Research, 2021, 85, 257-264.	1.6	6
31	Development of test methodologies for experimental lifetime investigations of tidal turbines. Forschung Im Ingenieurwesen/Engineering Research, 2021, 85, 649-659.	1.6	4
32	Method to determine the local load cycles of aÂblade bearing using flexible multi-body simulation. Forschung Im Ingenieurwesen/Engineering Research, 2021, 85, 211-218.	1.6	5
33	Identification of relevant acoustic transfer paths for WT drivetrains with an operational transfer path analysis. Forschung Im Ingenieurwesen/Engineering Research, 2021, 85, 345-351.	1.6	3
34	Model-Based Analysis of a Combined Heat and Power System Featuring a Hydrogen-Fired Gas Turbine With On-Site Hydrogen Production and Storage. Journal of Engineering for Gas Turbines and Power, 2021, 143, .	1.1	4
35	Simulative investigation of ring creep on aÂplanetary bearing of aÂwind turbine gearbox. Forschung Im Ingenieurwesen/Engineering Research, 2021, 85, 219-227.	1.6	2
36	Simulative investigation of wind turbine gearbox loads during power converter fault. Forschung Im Ingenieurwesen/Engineering Research, 2021, 85, 251-256.	1.6	11

#	Article	IF	CITATIONS
37	Method for airborne measurement of the spatial wind speed distribution above complex terrain. Wind Energy Science, 2021, 6, 427-440.	3.3	5
38	Methodology for the systematic design of conical plain bearings for use as main bearings in wind turbines. Forschung Im Ingenieurwesen/Engineering Research, 2021, 85, 629-637.	1.6	12
39	Development of a wind turbine gearbox virtual load sensor using multibody simulation and artificial neural networks. Forschung Im Ingenieurwesen/Engineering Research, 2021, 85, 241-250.	1.6	9
40	Condition monitoring of roller bearings using acoustic emission. Wind Energy Science, 2021, 6, 367-376.	3.3	7
41	Experimental and simulation-based analysis of asymmetrical spherical roller bearings as main bearings for wind turbines. Forschung Im Ingenieurwesen/Engineering Research, 2021, 85, 189-197.	1.6	6
42	Does laser surface texturing really have a negative impact on the fatigue lifetime of mechanical components?. Friction, 2021, 9, 1766-1775.	6.4	26
43	Early stage white etching crack identification using artificial neural networks. Forschung Im Ingenieurwesen/Engineering Research, 2021, 85, 153-163.	1.6	4
44	Reducing cost uncertainty in the drivetrain design decision with a focus on the operational phase. Wind Energy Science, 2021, 6, 571-584.	3.3	5
45	Numerical investigation of effects on replenishment in rolling point contacts using CFD simulations. Tribology International, 2021, 157, 106858.	5.9	15
46	Data-driven wear monitoring for sliding bearings using acoustic emission signals and long short-term memory neural networks. Wear, 2021, 476, 203616.	3.1	24
47	Investigation of Tribological Behavior of Lubricating Greases Composed of Different Bio-Based Polymer Thickeners. Lubricants, 2021, 9, 80.	2.9	13
48	Influence of temperature on wear performance of greases in rolling bearings. Industrial Lubrication and Tribology, 2021, 73, 862-871.	1.3	5
49	Methodology for the Concept Design of Locally Reinforced Composites. Applied Sciences (Switzerland), 2021, 11, 7246.	2.5	3
50	County Clustering with Bioenergy as Flexible Power Unit in a Renewable Energy System. Energies, 2021, 14, 5227.	3.1	0
51	Model-Based Estimation of the Strength of Laser-Based Plastic-Metal Joints Using Finite Element Microstructure Models and Regression Models. Materials, 2021, 14, 5004.	2.9	3
52	Interlaboratory comparison: Round robin test for the damage reproduction of white etching crack in cylindrical roller thrust bearings. Wear, 2021, 480-481, 203925.	3.1	4
53	A Combined Experimental and Atomistic Investigation of PTFE Double Transfer Film Formation and Lubrication in Rolling Point Contacts. Tribology Letters, 2021, 69, 1.	2.6	13
54	Why homogenization should be the averaging method of choice in hydrodynamic lubrication. Applications in Engineering Science, 2021, 7, 100055.	0.8	3

#	Article	IF	CITATIONS
55	Daten von Land- und Baumaschinen gewinnbringend nutzen. , 2021, , 471-520.		O
56	Identification of dependencies between product parameters and process stakeholders. Procedia CIRP, 2021, 100, 247-252.	1.9	5
57	Towards Holistic System Models Including Domain-Specific Simulation Models Based on SysML. Systems, 2021, 9, 76.	2.3	8
58	Integration of Production and Cost Models in Model-Based Product Development. Open Journal of Social Sciences, 2021, 09, 53-64.	0.3	7
59	Towards a data-driven assistance system for operating segment erectors in tunnel boring machines. , 2021, , .		2
60	Investigation of Dynamic Loads in Wind Turbine Drive Trains Due to Grid and Power Converter Faults. Energies, 2021, 14, 8542.	3.1	11
61	Effect of single- and multi-scale surface patterns on the frictional performance of journal bearings – A numerical study. Tribology International, 2020, 143, 106041.	5.9	35
62	An energetic approach for the prognosis of thermally induced white etching layers in bearing steel 100CrMn6. Tribology International, 2020, 143, 106096.	5.9	4
63	Influence of Drivetrain Hybridization on Transmission Lifetime. Applied Sciences (Switzerland), 2020, 10, 7086.	2.5	2
64	Thermally sprayed coatings for highly stressed sliding bearings. Wear, 2020, 458-459, 203415.	3.1	10
65	Revealing the interface nature of ZDDP tribofilm by X-ray photoelectron spectroscopy and atom probe tomography. Industrial Lubrication and Tribology, 2020, 72, 923-930.	1.3	8
66	Remaining Useful Life Determination for Wind Turbines. Journal of Physics: Conference Series, 2020, 1452, 012052.	0.4	5
67	Model approach for electromagnetically excited mechanical vibrations in direct-drive wind turbines. Journal of Physics: Conference Series, 2020, 1618, 022060.	0.4	5
68	Feasibility study for the use of hydrodynamic plain bearings with balancing support characteristics as main bearing in wind turbines. Journal of Physics: Conference Series, 2020, 1618, 052002.	0.4	6
69	Cage Loads of Wind Turbine Blade Bearing. Journal of Physics: Conference Series, 2020, 1618, 052061.	0.4	0
70	Multicriterial Evaluation of Renewable Energy Expansion Projects at Municipal Level for the Available Biomass Potential. Energies, 2020, 13, 6211.	3.1	2
71	Simulative investigation of the load propagation in a wind turbine drive train during a power converter fault. Journal of Physics: Conference Series, 2020, 1618, 032028.	0.4	9
72	Managing knowledge and parameter dependencies with MBSE in textile product development processes. Procedia CIRP, 2020, 91, 170-175.	1.9	6

#	Article	IF	CITATIONS
73	CUSTOMER SPECIFIC COMPATIBILITY MATRICES FOR FUNCTIONAL INTEGRAL PRODUCT ARCHITECTURES. Proceedings of the Design Society DESIGN Conference, 2020, 1, 1105-1114.	0.8	O
74	Investigation of the individual load distribution of a blade bearing test rig by means of finite element simulation. Journal of Physics: Conference Series, 2020, 1618, 052056.	0.4	1
75	Estimation of Internal Gearbox Loads for Condition Monitoring in Wind Turbines Based on Physical Modeling. Journal of Physics: Conference Series, 2020, 1669, 012008.	0.4	2
76	Development of a Low-Friction Radial Shaft Seal: Using CFD Simulations to Optimise the Microstructured Sealing Lip. Lubricants, 2020, 8, 41.	2.9	6
77	Correlation of Planetary Bearing Outer Ring Creep and Gear Load Distribution in a Full-Size Wind Turbine. Journal of Physics: Conference Series, 2020, 1452, 012062.	0.4	1
78	Availability Increase of Mobile Machinery through Condition Prognosis. ATZheavy Duty Worldwide, 2020, 13, 62-67.	0.1	1
79	A modeling method for gear transmission efficiency in transient operating conditions. Mechanism and Machine Theory, 2020, 153, 103996.	4.5	16
80	Investigation of the tire in-plane vibration property using an improved ring model. Journal of Sound and Vibration, 2020, 478, 115350.	3.9	7
81	Acoustic Response of Roller Bearings Under Critical Operating Conditions. Lecture Notes in Mechanical Engineering, 2020, , 740-749.	0.4	4
82	Modeling mechanical functional architectures in SysML. , 2020, , .		17
82	Modeling mechanical functional architectures in SysML. , 2020, , . Aeroelastic response of a multi-megawatt upwind horizontal axis wind turbine (HAWT) based on fluid–structure interaction simulation. Wind Energy Science, 2020, 5, 141-154.	3.3	17
	Aeroelastic response of a multi-megawatt upwind horizontal axis wind turbine (HAWT) based on	3.3	
83	Aeroelastic response of a multi-megawatt upwind horizontal axis wind turbine (HAWT) based on fluid–structure interaction simulation. Wind Energy Science, 2020, 5, 141-154. Impact of fiber versus steel ropes on the lifetime of crane winches. Modeling, Identification and		4
83	Aeroelastic response of a multi-megawatt upwind horizontal axis wind turbine (HAWT) based on fluidâ€"structure interaction simulation. Wind Energy Science, 2020, 5, 141-154. Impact of fiber versus steel ropes on the lifetime of crane winches. Modeling, Identification and Control, 2020, 41, 129-139. Design study for a multicomponent transducer for wind turbine test benches. Journal of Sensors and	1.1	2
83 84 85	Aeroelastic response of a multi-megawatt upwind horizontal axis wind turbine (HAWT) based on fluid–structure interaction simulation. Wind Energy Science, 2020, 5, 141-154. Impact of fiber versus steel ropes on the lifetime of crane winches. Modeling, Identification and Control, 2020, 41, 129-139. Design study for a multicomponent transducer for wind turbine test benches. Journal of Sensors and Sensor Systems, 2020, 9, 239-249. On an Extension of the Fatemi and Socie Equation for Rolling Contact in Rolling Bearings. Lecture	0.9	2
83 84 85 86	Aeroelastic response of a multi-megawatt upwind horizontal axis wind turbine (HAWT) based on fluidâ€"structure interaction simulation. Wind Energy Science, 2020, 5, 141-154. Impact of fiber versus steel ropes on the lifetime of crane winches. Modeling, Identification and Control, 2020, 41, 129-139. Design study for a multicomponent transducer for wind turbine test benches. Journal of Sensors and Sensor Systems, 2020, 9, 239-249. On an Extension of the Fatemi and Socie Equation for Rolling Contact in Rolling Bearings. Lecture Notes in Mechanical Engineering, 2019, , 438-457. Optimal Operation of a Gas Turbine Cogeneration Unit With Energy Storage for Wind Power System	0.9	4212
83 84 85 86	Aeroelastic response of a multi-megawatt upwind horizontal axis wind turbine (HAWT) based on fluidâ€"structure interaction simulation. Wind Energy Science, 2020, 5, 141-154. Impact of fiber versus steel ropes on the lifetime of crane winches. Modeling, Identification and Control, 2020, 41, 129-139. Design study for a multicomponent transducer for wind turbine test benches. Journal of Sensors and Sensor Systems, 2020, 9, 239-249. On an Extension of the Fatemi and Socie Equation for Rolling Contact in Rolling Bearings. Lecture Notes in Mechanical Engineering, 2019, , 438-457. Optimal Operation of a Gas Turbine Cogeneration Unit With Energy Storage for Wind Power System Integration. Journal of Engineering for Gas Turbines and Power, 2019, 141, . FE8 type laboratory testing of white etching crack (WEC) bearing failure mode in 100Cr6. Wear, 2019,	1.1 0.9 0.4	 4 2 1 2 2

#	Article	IF	CITATIONS
91	"FlexPad― Innovative conical sliding bearing for the main shaft of wind turbines. Journal of Physics: Conference Series, 2019, 1222, 012026.	0.4	5
92	Investigation of Modelling Depths for an Electromechanical Simulation of a Direct-Drive Generator Considering Parasitic Airgap Forces and External Loads. Journal of Physics: Conference Series, 2019, 1222, 012029.	0.4	1
93	Investigating the impact of wakes on single turbine availability. Journal of Physics: Conference Series, 2019, 1256, 012014.	0.4	1
94	Determination of Wind Turbine Main Bearing Load Distribution. Journal of Physics: Conference Series, 2019, 1222, 012030.	0.4	7
95	Enabling complexity management through merging business process modeling with MBSE. Procedia CIRP, 2019, 84, 451-456.	1.9	17
96	Acoustic Emission Source Localization in Ring Gears from Wind Turbine Planetary Gearboxes. Forschung Im Ingenieurwesen/Engineering Research, 2019, 83, 43-52.	1.6	9
97	Analysis of Wind-Turbine Main Bearing Loads Due to Constant Yaw Misalignments over a 20 Years Timespan. Energies, 2019, 12, 1768.	3.1	19
98	Electromechanical Simulation of a Direct-Drive Generator Considering Parasitic Magnetic Forces and External Loads. , 2019, , .		2
99	A multiscale-approach for wear prediction in journal bearing systems – from wearing-in towards steady-state wear. Wear, 2019, 426-427, 1203-1211.	3.1	26
100	3D X-ray computerized tomography of White Etching Cracks (WEC). Materials Characterization, 2019, 150, 78-87.	4.4	12
101	An Energy-Based Load Distribution Approach for the Application of Gear Mesh Stiffness on Elastic Bodies. Journal of Mechanical Design, Transactions of the ASME, 2019, 141, .	2.9	13
102	Effect of Over Rolling Frequency on the Film Formation in Grease Lubricated EHD Contacts under Starved Conditions. Lubricants, 2019, 7, 19.	2.9	12
103	Pattern Discovery in White Etching Crack Experimental Data Using Machine Learning Techniques. Applied Sciences (Switzerland), 2019, 9, 5502.	2.5	7
104	Tribolayer formation during macro- and microscale cyclic contact. Tribology International, 2019, 129, 436-441.	5.9	2
105	New Material Concepts for Thermally Sprayed Hydrodynamic Bearings. Journal of Thermal Spray Technology, 2019, 28, 305-313.	3.1	3
106	Noise, vibration and harshness validation methodology for complex elastic multibody simulation models: With application to an electrified drive train. JVC/Journal of Vibration and Control, 2019, 25, 243-254.	2.6	6
107	Multi-Domain Simulation for the Assessment of the NVH Behaviour of a Tractor with Hydrostatic-Mechanical Power Split Transmission. , 2019, , 19-28.		4
108	Test Method for Evaluating the Energy Efficiency of Wheel Loaders. ATZoffhighway Worldwide, 2018, 11, 44-49.	0.1	6

#	Article	IF	CITATIONS
109	Characterisation of elastic-plastic material characteristics of Sn solid solution, SbSn and Cu6Sn5 in the tin-based sliding bearing alloy SnSb12Cu6ZnAg. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 724, 566-575.	5.6	4
110	Simulation Method for the Characterisation of the Torque Transducers in MN·m range. Journal of Physics: Conference Series, 2018, 1065, 042014.	0.4	2
111	Robustness Test for Wind Turbine Gearbox Bearings. Journal of Physics: Conference Series, 2018, 1037, 052012.	0.4	5
112	Design of an independent smart service platform for wind turbines. Journal of Physics: Conference Series, 2018, 1037, 042026.	0.4	0
113	Comparison of wind turbine loads inside a wake between engineering model and CFD calculation. Journal of Physics: Conference Series, 2018, 1037, 072039.	0.4	0
114	Validation of the gearbox load calculation of a wind turbine MBS model. Journal of Physics: Conference Series, 2018, 1037, 062025.	0.4	11
115	Manufacturing cost - a critical evaluation criteria for new developments in wind turbine drivetrain technologies. Journal of Physics: Conference Series, 2018, 1102, 012024.	0.4	2
116	The effect of blade-tower interaction on the structure loading of multi megawatt horizontal axis wind turbine. Journal of Physics: Conference Series, 2018, 1037, 072033.	0.4	3
117	Experimental and Model-based Analysis of the Force Transmission in a Rotor Bearing Support System. Journal of Physics: Conference Series, 2018, 1037, 062028.	0.4	4
118	Investigation of dynamic drivetrain behaviour of a wind turbine during a power converter fault. Journal of Physics: Conference Series, 2018, 1037, 052031.	0.4	7
119	Friction as a major uncertainty factor on torque measurement in wind turbine test benches. Journal of Physics: Conference Series, 2018, 1037, 062001.	0.4	1
120	Effect of Base Oil Type in Grease Composition on the Lubricating Film Formation in EHD Contacts. Lubricants, 2018, 6, 32.	2.9	20
121	Investigation on the Effects of Structural Dynamics on Rolling Bearing Fault Diagnosis by Means of Multibody Simulation. International Journal of Rotating Machinery, 2018, 2018, 1-18.	0.8	9
122	Cost-efficient long-term estimation of gear oil filterability considering stresses in service. Industrial Lubrication and Tribology, 2018, 70, 724-732.	1.3	0
123	Influence of Slip and Lubrication Regime on the Formation of White Etching Cracks on a Two-Disc Test Rig. Lubricants, 2018, 6, 8.	2.9	6
124	From lab to application - Improved frictional performance of journal bearings induced by single- and multi-scale surface patterns. Tribology International, 2018, 127, 500-508.	5.9	60
125	Lifetime Calculation of Irregularly Oscillating Bearings in Offshore Winches. Modeling, Identification and Control, 2018, 39, 61-72.	1.1	6
126	CFD simulation of elastohydrodynamic lubrication problems with reduced order models for fluid–structure interaction. Tribology - Materials, Surfaces and Interfaces, 2017, 11, 30-38.	1.4	13

#	Article	IF	Citations
127	Development of a 4 MW Full-Size Wind-Turbine Test Bench. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5, 600-609.	5.4	45
128	Determination of Hydraulic Losses in Radial Cylindrical Roller Bearings Using CFD Simulations. Tribology International, 2017, 113, 507-509.	5.9	4
129	Determination of hydraulic losses in radial cylindrical roller bearings using CFD simulations. Tribology International, 2017, 113, 245-251.	5.9	22
130	Antiwear tribofilm growth in rolling bearings under boundary lubrication conditions. Tribology International, 2017, 113, 43-49.	5.9	19
131	Multiscale characterization of White Etching Cracks (WEC) in a 100Cr6 bearing from a thrust bearing test rig. Wear, 2017, 370-371, 73-82.	3.1	44
132	A Functional Platform Strategy for Integrated Machine Tools. Procedia CIRP, 2017, 60, 296-301.	1.9	4
133	Reproduction of white etching cracks under rolling contact loading on thrust bearing and two-disc test rigs. Wear, 2017, 390-391, 23-32.	3.1	36
134	Application of CPS Within Wind Energyâ€"Current Implementation and Future Potential. Springer Series in Wireless Technology, 2017, , 647-670.	1.1	1
135	Cyber-Physical Systems for Agricultural and Construction Machineryâ€"Current Applications and Future Potential. Springer Series in Wireless Technology, 2017, , 617-645.	1.1	7
136	Techno-Economic Study of Wind Farm Forecast Error Compensation by Flexible Heat-Driven CHP Units. , 2017, , .		3
137	Life cycle assessment and sustainable engineering in the context of near net shape grown components: striving towards a sustainable way of future production. Environmental Sciences Europe, 2017, 29, 27.	5.5	5
138	Modelling of Wind Turbine Loads nearby a Wind Farm. Journal of Physics: Conference Series, 2017, 854, 012038.	0.4	8
139	CHALLENGES AND OPPORTUNITIES OF FULL SIZE NACELLE TESTING OF WIND TURBINE GENERATORS. The Proceedings of the JSME International Conference on Motion and Power Transmissions, 2017, 2017, 10-01.	0.0	4
140	Sensitivity Analysis on the Reliability of an Offshore Winch Regarding Selected Gearbox Parameters. Modeling, Identification and Control, 2017, 38, 51-58.	1.1	7
141	Coupling of electromagnetic and structural dynamics for a wind turbine generator. Journal of Physics: Conference Series, 2016, 753, 082034.	0.4	6
142	Microstructural and Chemical Characterization of the Tribolayer Formation in Highly Loaded Cylindrical Roller Thrust Bearings. Lubricants, 2016, 4, 19.	2.9	30
143	Investigation on pitch system loads by means of an integral multi body simulation approach. Journal of Physics: Conference Series, 2016, 753, 112002.	0.4	8
144	Feasibility of large-scale calorimetric efficiency measurement for wind turbine generator drivetrains. Journal of Physics: Conference Series, 2016, 753, 072011.	0.4	6

#	Article	IF	Citations
145	Improved Wear Behavior of Cylindrical Roller Thrust Bearings by Threeâ€Beam Laser Interference. Advanced Engineering Materials, 2016, 18, 854-862.	3.5	28
146	Prediction of fatigue limit of journal bearings considering a multi-axial stress state. Industrial Lubrication and Tribology, 2016, 68, 430-438.	1.3	3
147	New Drive Train Concept with Multiple High Speed Generator. Journal of Physics: Conference Series, 2016, 753, 112001.	0.4	2
148	Analysis of time-domain signals of piezoelectric strain sensors on slow spinning planetary gearboxes. Mechanical Systems and Signal Processing, 2016, 72-73, 727-744.	8.0	16
149	Influencing factors for static immersion tests of compatibility between elastomeric materials and lubricants. Polymer Testing, 2016, 49, 8-14.	4.8	1
150	Modular System Modeling for Quantitative Reliability Evaluation of Technical Systems. Modeling, Identification and Control, 2016, 37, 19-29.	1.1	9
151	A software package for maintenance management of wind turbines. Journal of Fundamentals of Renewable Energy and Applications, 2016, 06, .	0.2	0
152	Influence of run-in procedures and thermal surface treatment on the anti-wear performance of additive-free lubricant oils in rolling bearings. Wear, 2015, 328-329, 309-317.	3.1	11
153	Development of a 4 MW full-size wind-turbine test bench. , 2015, , .		4
154	Model predictive control of a wind turbine modelled in Simpack. Journal of Physics: Conference Series, 2014, 524, 012047.	0.4	10
155	Testing nacelles of wind turbines with a hardware in the loop test bench. IEEE Instrumentation and Measurement Magazine, 2014, 17, 26-33.	1.6	11
156	Mixed friction model for rough contacts at high pressure. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 227, 496-509.	1.8	1
157	Leeds–Lyon Symposium on Tribology: Great Challenges in Tribology. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 227, 520-521.	1.8	0
158	PVD coated rolling bearings under dry running conditions. Materialwissenschaft Und Werkstofftechnik, 2011, 42, 1025-1034.	0.9	2
159	Contamination Sensitivity of Hydraulic Pumps and Valves. , 1997, , 261-276.		1
160	Contamination Sensitivity of Controlled Variable Displacement Pumps and Continuous Valves., 0,,.		0
161	Reliability Evaluation of Drivetrains: Challenges for Off―Highway Machines. , 0, , .		3
162	Enhanced method for optimum driving point identification for modal testing. JVC/Journal of Vibration and Control, 0, , 107754632110646.	2.6	1