Aurora GalvÃ;n Cejudo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6015184/publications.pdf

Version: 2024-02-01

74 papers

4,055 citations

35 h-index 62 g-index

76 all docs

76 docs citations

76 times ranked 3419 citing authors

#	Article	IF	CITATIONS
1	Nitrate Reductase Regulates Plant Nitric Oxide Homeostasis. Trends in Plant Science, 2017, 22, 163-174.	4.3	338
2	Understanding nitrate assimilation and its regulation in microalgae. Frontiers in Plant Science, 2015, 6, 899.	1.7	261
3	Transgenic microalgae as green cell-factories. Trends in Biotechnology, 2004, 22, 45-52.	4.9	250
4	Identification of nitrate transporter genes in Chlamydomonas reinhardtii. Plant Journal, 1994, 5, 407-419.	2.8	189
5	Inorganic nitrogen assimilation in Chlamydomonas. Journal of Experimental Botany, 2007, 58, 2279-2287.	2.4	136
6	A dual system formed by the ARC and NR molybdoenzymes mediates nitriteâ€dependent NO production in <i>Chlamydomonas</i> . Plant, Cell and Environment, 2016, 39, 2097-2107.	2.8	130
7	A high-affinity molybdate transporter in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20126-20130.	3.3	125
8	Nitrate Signaling by the Regulatory Gene <i>NIT2</i> i>in <i>Chlamydomonas</i> . Plant Cell, 2007, 19, 3491-3503.	3.1	124
9	Nitrate Assimilation in <i>Chlamydomonas</i> . Eukaryotic Cell, 2008, 7, 555-559.	3.4	114
10	A high affinity nitrate transport system from Chlamydomonas requires two gene products. FEBS Letters, 2000, 466, 225-227.	1.3	106
11	Nitrate and Nitrite Are Transported by Different Specific Transport Systems and by a Bispecific Transporter in Chlamydomonas reinhardtii. Journal of Biological Chemistry, 1996, 271, 2088-2092.	1.6	105
12	Restriction enzyme site-directed amplification PCR: A tool to identify regions flanking a marker DNA. Analytical Biochemistry, 2005, 340, 330-335.	1.1	99
13	Differential Regulation of the Chlamydomonas Nar1 Gene Family by Carbon and Nitrogen. Protist, 2006, 157, 421-433.	0.6	99
14	Algae and humans share a molybdate transporter. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6420-6425.	3.3	97
15	Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants. Plant Methods, 2011, 7, 24.	1.9	87
16	<scp>THB</scp> 1, a truncated hemoglobin, modulates nitric oxide levels and nitrate reductase activity. Plant Journal, 2015, 81, 467-479.	2.8	87
17	A Soluble Guanylate Cyclase Mediates Negative Signaling by Ammonium on Expression of Nitrate Reductase in <i>Chlamydomonas</i> Â. Plant Cell, 2010, 22, 1532-1548.	3.1	86
18	Molybdenum metabolism in plants. Metallomics, 2013, 5, 1191.	1.0	86

#	Article	lF	Citations
19	Five nitrate assimilation-related loci are clustered in Chlamydomonas reinhardtii. Molecular Genetics and Genomics, 1993, 240, 387-394.	2.4	85
20	Functional Genomics of the Regulation of the Nitrate Assimilation Pathway in Chlamydomonas. Plant Physiology, 2005, 137, 522-533.	2.3	83
21	The Chlamydomonas reinhardtii Nar1 Gene Encodes a Chloroplast Membrane Protein Involved in Nitrite Transport. Plant Cell, 2000, 12, 1441-1453.	3.1	79
22	Nitric oxide controls nitrate and ammonium assimilation in Chlamydomonas reinhardtii. Journal of Experimental Botany, 2013, 64, 3373-3383.	2.4	67
23	Function and Structure of the Molybdenum Cofactor Carrier Protein from Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2006, 281, 30186-30194.	1.6	65
24	Role of Nitrate Reductase in NO Production in Photosynthetic Eukaryotes. Plants, 2019, 8, 56.	1.6	57
25	Nitrate signalling on the nitrate reductase gene promoter depends directly on the activity of the nitrate transport systems in Chlamydomonas. Plant Journal, 2002, 30, 261-271.	2.8	52
26	Mcp1 Encodes the Molybdenum Cofactor Carrier Protein in Chlamydomonas reinhardtii and Participates in Protection, Binding, and Storage Functions of the Cofactor. Journal of Biological Chemistry, 2003, 278, 10885-10890.	1.6	50
27	Algae-Bacteria Consortia as a Strategy to Enhance H2 Production. Cells, 2020, 9, 1353.	1.8	48
28	Differential Regulation of the High Affinity Nitrite Transport Systems III and IV in Chlamydomonas reinhardtii. Journal of Biological Chemistry, 1999, 274, 27801-27806.	1.6	46
29	The Chlamydomonas reinhardtii Molybdenum Cofactor Enzyme crARC Has a Zn-Dependent Activity and Protein Partners Similar to Those of Its Human Homologue. Eukaryotic Cell, 2011, 10, 1270-1282.	3.4	44
30	Nitrite Reductase Mutants as an Approach to Understanding Nitrate Assimilation in Chlamydomonas reinhardtii. Plant Physiology, 2000, 122, 283-290.	2.3	43
31	Homeostasis of the micronutrients Ni, Mo and Cl with specific biochemical functions. Current Opinion in Plant Biology, 2009, 12, 358-363.	3.5	43
32	Cytosolic glutamine synthetase and not nitrate reductase from the green alga Chlamydomonas reinhardtii is phosphorylated and binds 14-3-3 proteins. Planta, 2001, 212, 264-269.	1.6	42
33	Nitrite transport to the chloroplast in Chlamydomonas reinhardtii: molecular evidence for a regulated process. Journal of Experimental Botany, 2002, 53, 845-853.	2.4	40
34	The molybdenum cofactor enzyme mARC: Moonlighting or promiscuous enzyme?. BioFactors, 2017, 43, 486-494.	2.6	40
35	Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures. Biotechnology for Biofuels, 2015, 8, 149.	6.2	38
36	Nitrate Reductase Regulates Expression of Nitrite Uptake and Nitrite Reductase Activities in <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 1992, 98, 422-426.	2.3	35

#	Article	IF	Citations
37	How Chlamydomonas handles nitrate and the nitric oxide cycle. Journal of Experimental Botany, 2017, 68, 2593-2602.	2.4	34
38	OK, thanks! A new mutualism between Chlamydomonas and methylobacteria facilitates growth on amino acids and peptides. FEMS Microbiology Letters, 2018, 365, .	0.7	33
39	Constitutive expression of nitrate reductase changes the regulation of nitrate and nitrite transporters in Chlamydomonas reinhardtii. Plant Journal, 1996, 9, 819-827.	2.8	30
40	From the Eukaryotic Molybdenum Cofactor Biosynthesis to the Moonlighting Enzyme mARC. Molecules, 2018, 23, 3287.	1.7	30
41	Insertional Mutagenesis as a Tool to Study Genes/Functions in Chlamydomonas. Advances in Experimental Medicine and Biology, 2007, 616, 77-89.	0.8	29
42	Calcium regulation by lens plasma membrane vesicles. Archives of Biochemistry and Biophysics, 1988, 264, 472-481.	1.4	28
43	The activity of the high-affinity nitrate transport system I (NRT2;1, NAR2) is responsible for the efficient signalling of nitrate assimilation genes in Chlamydomonas reinhardtii. Planta, 2002, 215, 606-611.	1.6	27
44	Molybdenum metabolism in the alga Chlamydomonas stands at the crossroad of those in Arabidopsis and humans. Metallomics, 2011, 3, 578.	1.0	24
45	Nitrogen scavenging from amino acids and peptides in the model alga Chlamydomonas reinhardtii. The role of extracellular l-amino oxidase. Algal Research, 2019, 38, 101395.	2.4	24
46	Regulation of nitrite uptake and nitrite reductase expression in Chlamydomonas reinhardtii. Biochimica Et Biophysica Acta - General Subjects, 1991, 1074, 6-11.	1.1	23
47	Chlamydomonas reinhardtii CNX1E Reconstitutes Molybdenum Cofactor Biosynthesis in Escherichia coli Mutants. Eukaryotic Cell, 2007, 6, 1063-1067.	3.4	23
48	Chlamydomonas reinhardtii, an Algal Model in the Nitrogen Cycle. Plants, 2020, 9, 903.	1.6	22
49	Nitrogen Assimilation and its Regulation. , 2009, , 69-113.		21
50	The negative effect of nitrate on gametogenesis is independent of nitrate assimilation in Chlamydomonas reinhardtii. Planta, 2000, 211, 287-292.	1.6	19
51	Transcriptional regulation of CDP1 and CYG56 is required for proper NH4+ sensing in Chlamydomonas. Journal of Experimental Botany, 2011, 62, 1425-1437.	2.4	19
52	Chlamydomonas-Methylobacterium oryzae cooperation leads to increased biomass, nitrogen removal and hydrogen production. Bioresource Technology, 2022, 352, 127088.	4.8	19
53	Nitrogen Assimilation and its Regulation. , 1998, , 637-659.		18
54	The plastidic nitrite transporter NAR1;1 improves nitrate use efficiency for growth in Chlamydomonas. Plant, Cell and Environment, 2004, 27, 1321-1328.	2.8	17

#	Article	IF	CITATIONS
55	Chlamydomonas reinhardtii strains expressing nitrate reductase under control of the cabll-1 promoter: isolation of chlorate resistant mutants and identification of new loci for nitrate assimilation. Photosynthesis Research, 2005, 83, 151-161.	1.6	12
56	THB1 regulates nitrate reductase activity and THB1 and THB2 transcription differentially respond to NO and the nitrate/ammonium balance in Chlamydomonas. Plant Signaling and Behavior, 2015, 10, e1042638.	1.2	12
57	<scp><i>C</i></scp> <i>hlamydomonas</i> â€ <scp>NZF</scp> 1, a tandemâ€repeated zinc finger factor involved in nitrate signalling by controlling the regulatory gene <scp><i>NIT</i></scp> <i>2</i> <plant, 2014,="" 2139-2150.<="" 37,="" and="" cell="" environment,="" p=""></plant,>	2.8	11
58	Characterization of a Mutant Deficient for Ammonium and Nitric Oxide Signalling in the Model System Chlamydomonas reinhardtii. PLoS ONE, 2016, 11, e0155128.	1.1	11
59	Blueâ€light requirement for the biosynthesis of an NO2â^'transport system in theChlamydomonas reinhardtiinitrate transport mutant S10*. Plant, Cell and Environment, 1999, 22, 1169-1175.	2.8	10
60	Ketocarotenoid Biosynthesis in Transgenic Microalgae Expressing a Foreign \hat{l}^2 -C-4-carotene Oxygenase Gene. Methods in Molecular Biology, 2012, 892, 283-295.	0.4	9
61	Identification of the MAPK Cascade and its Relationship with Nitrogen Metabolism in the Green Alga Chlamydomonas reinhardtii. International Journal of Molecular Sciences, 2020, 21, 3417.	1.8	9
62	Origin Recognition Complex (ORC) Evolution Is Influenced by Global Gene Duplication/Loss Patterns in Eukaryotic Genomes. Genome Biology and Evolution, 2020, 12, 3878-3889.	1.1	9
63	Characterization of Chlamydomonas 102 and 104 Mutants Reveals Intermolecular Complementation in the Molybdenum Cofactor Protein CNX1E. Protist, 2013, 164, 116-128.	0.6	8
64	Study of Different Variants of Mo Enzyme crARC and the Interaction with Its Partners crCytb5-R and crCytb5-1. International Journal of Molecular Sciences, 2017, 18, 670.	1.8	8
65	lonic and substrate requirements of the high affinity calcium pumping ATPase in endoplasmic reticulum of pancreas. International Journal of Biochemistry & Cell Biology, 1987, 19, 987-993.	0.8	7
66	NRT2.4 and NRT2.5 Are Two Half-Size Transporters from the Chlamydomonas NRT2 Family. Agronomy, 2016, 6, 20.	1.3	7
67	Arginine is a component of the ammonium-CYG56 signalling cascade that represses genes of the nitrogen assimilation pathway in Chlamydomonas reinhardtii. PLoS ONE, 2018, 13, e0196167.	1.1	6
68	Analysis of Chlamydomonas mutants with abnormal expression of CO2 and HCO3- uptake systems. Functional Plant Biology, 2002, 29, 251.	1.1	6
69	H2 production pathways in nutrient-replete mixotrophic Chlamydomonas cultures under low light. Response to the commentary article "On the pathways feeding the H2 production process in nutrient-replete, hypoxic conditions,―by Alberto Scoma and Szilvia Z. Tóth. Biotechnology for Biofuels, 2017, 10, 117.	6.2	5
70	The Chlamydomonas reinhardtii Nar1 Gene Encodes a Chloroplast Membrane Protein Involved in Nitrite Transport. Plant Cell, 2000, 12, 1441.	3.1	3
71	Isolation and characterization of two new negative regulatory mutants for nitrate assimilation in. Molecular Genetics and Genomics, 1996, 251, 461.	2.4	2
72	Impaired calcium sequestration activity in liver microsomes from fasted rats. FEBS Letters, 1987, 211, 41-43.	1.3	1

ą	#	Article	IF	CITATIONS
7	73	Corrigendum to: A high affinity nitrate transport system from Chlamydomonas requires two gene products (FEBS 23233). FEBS Letters, 2000, 481, 88-88.	1.3	1
7	74	The Green Alga Chlamydomonas as a Tool to Study the Nitrate Assimilation Pathway in Plants. , 2006, , 125-158.		0