John Volckens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6015050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multilayer Paper-Based Device for Colorimetric and Electrochemical Quantification of Metals. Analytical Chemistry, 2014, 86, 3555-3562.	6.5	288
2	Simple, distance-based measurement for paper analytical devices. Lab on A Chip, 2013, 13, 2397.	6.0	281
3	Microfluidic Paper-Based Analytical Device for Particulate Metals. Analytical Chemistry, 2012, 84, 4474-4480.	6.5	270
4	Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Analytica Chimica Acta, 2015, 874, 40-48.	5.4	260
5	Paper-based analytical devices for environmental analysis. Analyst, The, 2016, 141, 1874-1887.	3.5	238
6	Multiplexed paper analytical device for quantification of metals using distance-based detection. Lab on A Chip, 2015, 15, 2808-2818.	6.0	208
7	Comparison of wildfire smoke estimation methods and associations with cardiopulmonaryâ€related hospital admissions. GeoHealth, 2017, 1, 122-136.	4.0	113
8	Counting and particle transmission efficiency of the aerodynamic particle sizer. Journal of Aerosol Science, 2005, 36, 1400-1408.	3.8	106
9	A microfluidic paper-based analytical device for rapid quantification of particulate chromium. Analytica Chimica Acta, 2013, 800, 50-55.	5.4	95
10	Rapid flow in multilayer microfluidic paper-based analytical devices. Lab on A Chip, 2018, 18, 793-802.	6.0	95
11	Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers. Atmospheric Environment, 2020, 220, 117067.	4.1	95
12	Microfluidic Paper-Based Analytical Device for Aerosol Oxidative Activity. Environmental Science & Technology, 2013, 47, 932-940.	10.0	77
13	Microfluidic Electrochemical Sensor for On-Line Monitoring of Aerosol Oxidative Activity. Journal of the American Chemical Society, 2012, 134, 10562-10568.	13.7	73
14	Direct Particle-to-Cell Deposition of Coarse Ambient Particulate Matter Increases the Production of Inflammatory Mediators from Cultured Human Airway Epithelial Cells. Environmental Science & Technology, 2009, 43, 4595-4599.	10.0	68
15	Development and evaluation of an ultrasonic personal aerosol sampler. Indoor Air, 2017, 27, 409-416.	4.3	68
16	Solid-Phase Extraction Coupled to a Paper-Based Technique for Trace Copper Detection in Drinking Water. Environmental Science & Technology, 2018, 52, 3567-3573.	10.0	68
17	Impact of a cleaner-burning cookstove intervention on blood pressure in Nicaraguan women. Indoor Air, 2013, 23, 105-114.	4.3	66
18	The Fort Collins Commuter Study: Impact of route type and transport mode on personal exposure to multiple air pollutants. Journal of Exposure Science and Environmental Epidemiology, 2016, 26, 397-404.	3.9	64

#	Article	IF	CITATIONS
19	Exposure to household air pollution from biomass cookstoves and blood pressure among women in rural Honduras: A crossâ \in sectional study. Indoor Air, 2019, 29, 130-142.	4.3	63
20	Uncertainties in global aerosols and climate effects due to biofuel emissions. Atmospheric Chemistry and Physics, 2015, 15, 8577-8596.	4.9	62
21	Determination of aerosol oxidative activity using silver nanoparticle aggregation on paper-based analytical devices. Analyst, The, 2013, 138, 6766.	3.5	59
22	A Laboratory Assessment of 120 Air Pollutant Emissions from Biomass and Fossil Fuel Cookstoves. Environmental Science & Technology, 2019, 53, 7114-7125.	10.0	58
23	Airborne Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): What We Know. Clinical Infectious Diseases, 2021, 73, 1924-1926.	5.8	55
24	Field measurements of solid-fuel cookstove emissions from uncontrolled cooking in China, Honduras, Uganda, and India. Atmospheric Environment, 2018, 190, 116-125.	4.1	52
25	Effects of aerosol type and simulated aging on performance of low-cost PM sensors. Journal of Aerosol Science, 2020, 150, 105654.	3.8	52
26	The Fort Collins commuter study: Variability in personal exposure to air pollutants by microenvironment. Indoor Air, 2019, 29, 231-241.	4.3	50
27	Oxidative Stress and Aromatic Hydrocarbon Response of Human Bronchial Epithelial Cells Exposed to Petro- or Biodiesel Exhaust Treated with a Diesel Particulate Filter. Toxicological Sciences, 2014, 141, 505-514.	3.1	47
28	A Baseline Evaluation of Traditional Cook Stove Smoke Exposures and Indicators of Cardiovascular and Respiratory Health among Nicaraguan Women. International Journal of Occupational and Environmental Health, 2011, 17, 113-121.	1.2	45
29	Development of a method for personal, spatiotemporal exposure assessment. Journal of Environmental Monitoring, 2009, 11, 1331.	2.1	43
30	Influence of stove type and cooking pot temperature on particulate matter emissions from biomass cook stoves. Energy for Sustainable Development, 2012, 16, 448-455.	4.5	43
31	Proinflammatory effects of cookstove emissions on human bronchial epithelial cells. Indoor Air, 2013, 23, 4-13.	4.3	42
32	A Baseline Evaluation of Traditional Cook Stove Smoke Exposures and Indicators of Cardiovascular and Respiratory Health among Nicaraguan Women. International Journal of Occupational and Environmental Health, 2011, 17, 113-121.	1.2	41
33	Household air pollution from biomass-burning cookstoves and metabolic syndrome, blood lipid concentrations, and waist circumference in Honduran women: A cross-sectional study. Environmental Research, 2019, 170, 46-55.	7.5	41
34	Janus Electrochemical Paper-Based Analytical Devices for Metals Detection in Aerosol Samples. Analytical Chemistry, 2020, 92, 1439-1446.	6.5	40
35	Linking Load, Fuel, and Emission Controls to Photochemical Production of Secondary Organic Aerosol from a Diesel Engine. Environmental Science & Technology, 2017, 51, 1377-1386.	10.0	38
36	AgNP/Bi/Nafionâ€modified Disposable Electrodes for Sensitive Zn(II), Cd(II), and Pb(II) Detection in Aerosol Samples. Electroanalysis, 2017, 29, 880-889.	2.9	37

#	Article	IF	CITATIONS
37	The association between wildfire smoke exposure and asthma-specific medical care utilization in Oregon during the 2013 wildfire season. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 618-628.	3.9	37
38	Ambient Particulate Matter Size Distributions Drive Regional and Global Variability in Particle Deposition in the Respiratory Tract. GeoHealth, 2018, 2, 298-312.	4.0	36
39	Comparison of methods for measuring gas-particle partitioning of semivolatile compounds. Atmospheric Environment, 2003, 37, 3177-3188.	4.1	35
40	Effects of sampling bias on gas–particle partitioning of semi-volatile compounds. Atmospheric Environment, 2003, 37, 3385-3393.	4.1	35
41	Within-microenvironment exposure to particulate matter and health effects in children with asthma: a pilot study utilizing real-time personal monitoring with GPS interface. Environmental Health, 2016, 15, 96.	4.0	35
42	An accurate filter loading correction is essential for assessing personal exposure to black carbon using an Aethalometer. Journal of Exposure Science and Environmental Epidemiology, 2017, 27, 409-416.	3.9	34
43	Quantifying the Contribution to Uncertainty in Mortality Attributed to Household, Ambient, and Joint Exposure to PM _{2.5} From Residential Solid Fuel Use. GeoHealth, 2018, 2, 25-39.	4.0	34
44	Exposure to household air pollution from biomass-burning cookstoves and HbA1c and diabetic status among Honduran women. Indoor Air, 2018, 28, 768-776.	4.3	34
45	AÂlow-cost particulate matter (PM _{2.5}) monitor for wildland fire smoke. Atmospheric Measurement Techniques, 2018, 11, 1087-1097.	3.1	33
46	Biodiesel effects on particulate radiocarbon (14C) emissions from a diesel engine. Journal of Aerosol Science, 2008, 39, 667-678.	3.8	32
47	Technical Note: Performance of a Personal Electrostatic Precipitator Particle Sampler. Aerosol Science and Technology, 2002, 36, 162-165.	3.1	30
48	Oil Mist Concentration: A Comparison of Sampling Methods. AlHA Journal, 1999, 60, 684-689.	0.4	29
49	Measurement of Gaseous and Particulate Emissions from Algae-Based Fatty Acid Methyl Esters. SAE International Journal of Fuels and Lubricants, 0, 3, 292-321.	0.2	28
50	A Personal, Thermophoretic Sampler for Airborne Nanoparticles. Aerosol Science and Technology, 2011, 45, 744-750.	3.1	28
51	Size, Composition, and Source Profiles of Inhalable Bioaerosols from Colorado Dairies. Environmental Science & Technology, 2017, 51, 6430-6440.	10.0	28
52	Quantifying the Health Benefits of Face Masks and Respirators to Mitigate Exposure to Severe Air Pollution. GeoHealth, 2021, 5, e2021GH000482.	4.0	28
53	Design and testing of a low-cost sensor and sampling platform for indoor air quality. Building and Environment, 2021, 206, 108398.	6.9	26
54	Respiratory Aerosol Emissions from Vocalization: Age and Sex Differences Are Explained by Volume and Exhaled CO ₂ . Environmental Science and Technology Letters, 2021, 8, 1071-1076.	8.7	26

#	Article	IF	CITATIONS
55	Partitioning Theory for Respiratory Deposition of Semivolatile Aerosols. Annals of Occupational Hygiene, 2003, 47, 157-64.	1.9	25
56	Carbonaceous species emitted from handheld two-stroke engines. Atmospheric Environment, 2008, 42, 1239-1248.	4.1	25
57	Low-cost reusable sensor for cobalt and nickel detection in aerosols using adsorptive cathodic square-wave stripping voltammetry. Journal of Electroanalytical Chemistry, 2017, 805, 75-82.	3.8	25
58	Air Pollution Monitoring for Health Research and Patient Care. An Official American Thoracic Society Workshop Report. Annals of the American Thoracic Society, 2019, 16, 1207-1214.	3.2	25
59	Oil Mist Concentration: A Comparison of Sampling Methods. AIHA Journal, 1999, 60, 684-689.	0.4	25
60	Rapid Detection of Transition Metals in Welding Fumes Using Paper-Based Analytical Devices. Annals of Occupational Hygiene, 2014, 58, 413-23.	1.9	24
61	Quantitative Protection Factors for Common Masks and Face Coverings. Environmental Science & Technology, 2021, 55, 3136-3143.	10.0	24
62	Development of a Transfer Function for a Personal, Thermophoretic Nanoparticle Sampler. Aerosol Science and Technology, 2014, 48, 81-89.	3.1	23
63	Laboratory Evaluation of a Microfluidic Electrochemical Sensor for Aerosol Oxidative Load. Aerosol Science and Technology, 2014, 48, 489-497.	3.1	23
64	Differential Response of Human Nasal and Bronchial Epithelial Cells Upon Exposure to Size-Fractionated Dairy Dust. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 583-594.	2.3	23
65	Murine precision-cut lung slices exhibit acute responses following exposure to gasoline direct injection engine emissions. Science of the Total Environment, 2016, 568, 1102-1109.	8.0	23
66	The Firepower Sweep Test: A novel approach to cookstove laboratory testing. Indoor Air, 2018, 28, 936-949.	4.3	23
67	Acute Effects on Blood Pressure Following Controlled Exposure to Cookstove Air Pollution in the STOVES Study. Journal of the American Heart Association, 2019, 8, e012246.	3.7	23
68	Electrostatic Sampler for Semivolatile Aerosols:Â Chemical Artifacts. Environmental Science & Technology, 2002, 36, 4608-4612.	10.0	22
69	Emissions profile from new and in-use handheld, 2-stroke engines. Atmospheric Environment, 2007, 41, 640-649.	4.1	22
70	Paper-based microfluidics for experimental design: screening masking agents for simultaneous determination of Mn(<scp>ii</scp>) and Co(<scp>ii</scp>). Analytical Methods, 2017, 9, 534-540.	2.7	22
71	Filter and Electrostatic Samplers for Semivolatile Aerosols:Â Physical Artifacts. Environmental Science & Technology, 2002, 36, 4613-4617.	10.0	21
72	Personal Exposure to PM _{2.5} Black Carbon and Aerosol Oxidative Potential using an Automated Microenvironmental Aerosol Sampler (AMAS). Environmental Science & Technology, 2018, 52, 11267-11275.	10.0	21

#	Article	IF	CITATIONS
73	Design and evaluation of a portable PM _{2.5} monitor featuring a low-cost sensor in line with an active filter sampler. Environmental Sciences: Processes and Impacts, 2019, 21, 1403-1415.	3.5	21
74	Time course of bronchial cell inflammation following exposure to diesel particulate matter using a modified EAVES. Toxicology in Vitro, 2014, 28, 829-837.	2.4	20
75	Variation in gravimetric correction factors for nephelometer-derived estimates of personal exposure to PM2.5. Environmental Pollution, 2019, 250, 251-261.	7.5	20
76	Prospects and Pitfalls of Occupational Hazard Mapping: †Between These Lines There Be Dragons'. Annals of Occupational Hygiene, 2011, 55, 829-40.	1.9	19
77	Kitchen concentrations of fine particulate matter and particle number concentration in households using biomass cookstoves in rural Honduras. Environmental Pollution, 2020, 258, 113697.	7.5	19
78	Effects of operational mode on particle size and number emissions from a biomass gasifier cookstove. Aerosol Science and Technology, 2018, 52, 87-97.	3.1	18
79	Modeling Evaporative Loss of Oil Mist Collected by Sampling Filters. Journal of Occupational and Environmental Hygiene, 2000, 15, 90-96.	0.4	17
80	Acute differences in pulse wave velocity, augmentation index, and central pulse pressure following controlled exposures to cookstove air pollution in the Subclinical Tests of Volunteers Exposed to Smoke (SToVES) study. Environmental Research, 2020, 180, 108831.	7.5	16
81	Mist Concentration Measurements II: Laboratory and Field Evaluations. Journal of Occupational and Environmental Hygiene, 2000, 15, 370-379.	0.4	15
82	Solid versus Liquid Particle Sampling Efficiency of Three Personal Aerosol Samplers when Facing the Wind. Annals of Occupational Hygiene, 2012, 56, 194-206.	1.9	15
83	Secondary organic aerosol formation from evaporated biofuels: comparison to gasoline and correction for vapor wall losses. Environmental Sciences: Processes and Impacts, 2020, 22, 1461-1474.	3.5	15
84	Evaluation of the pDR-1200 Real-Time Aerosol Monitor. Journal of Occupational and Environmental Hygiene, 2008, 5, 353-359.	1.0	14
85	Effects of Fuel Moisture Content on Emissions from a Rocket-Elbow Cookstove. Environmental Science & Technology, 2019, 53, 4648-4656.	10.0	14
86	SARS-CoV-2 indoor air transmission is a threat that can be addressed with science. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
87	Flexible low-cost system for small animal aerosol inhalation exposure to drugs, proteins, inflammatory agents, and infectious agents. BioTechniques, 2009, 46, Piii-Pviii.	1.8	13
88	Development of a Sampler for Total Aerosol Deposition in the Human Respiratory Tract. Annals of Occupational Hygiene, 2009, 53, 731-738.	1.9	13
89	An improved model for particle deposition in porous foams. Journal of Aerosol Science, 2009, 40, 563-572.	3.8	13
90	Development of a Sampler to Estimate Regional Deposition of Aerosol in the Human Respiratory Tract. Annals of Occupational Hygiene, 2013, 57, 1138-47.	1.9	13

#	Article	IF	CITATIONS
91	A quantitative model of cookstove variability and field performance: Implications for sample size. Biomass and Bioenergy, 2015, 72, 233-241.	5.7	13
92	Effects of Data Sparsity and Spatiotemporal Variability on Hazard Maps of Workplace Noise. Journal of Occupational and Environmental Hygiene, 2015, 12, 256-265.	1.0	12
93	Chemical Composition and Emissions Factors for Cookstove Startup (Ignition) Materials. Environmental Science & Technology, 2018, 52, 9505-9513.	10.0	12
94	A low-cost monitor for simultaneous measurement of fine particulate matter and aerosol optical depth – Part 1: Specifications and testing. Atmospheric Measurement Techniques, 2019, 12, 5431-5441.	3.1	12
95	A low-cost monitor for measurement of fine particulate matter and aerosol optical depth – Part 2: Citizen-science pilot campaign in northern Colorado. Atmospheric Measurement Techniques, 2019, 12, 6385-6399.	3.1	12
96	Variability of aerosol mass and number concentrations during taconite mining operations. Journal of Occupational and Environmental Hygiene, 2020, 17, 1-14.	1.0	12
97	A Simple and Disposable Sampler for Inhalable Aerosol. Annals of Occupational Hygiene, 2016, 60, 150-160.	1.9	11
98	Development and validation of models to predict personal ventilation rate for air pollution research. Journal of Exposure Science and Environmental Epidemiology, 2019, 29, 568-577.	3.9	11
99	Exposure to household air pollution from biomass cookstoves and self-reported symptoms among women in rural Honduras. International Journal of Environmental Health Research, 2020, 30, 160-173.	2.7	11
100	Measuring and modeling the primary organic aerosol volatility from a modern non-road diesel engine. Atmospheric Environment, 2020, 223, 117221.	4.1	11
101	High-throughput, semi-automated dithiothreitol (DTT) assays for oxidative potential of fine particulate matter. Atmospheric Environment, 2020, 222, 117132.	4.1	11
102	Short-term differences in cardiac function following controlled exposure to cookstove air pollution: The subclinical tests on volunteers exposed to smoke (STOVES) study. Environment International, 2021, 146, 106254.	10.0	11
103	Exposure to Household Air Pollution from Biomass Cookstoves and Levels of Fractional Exhaled Nitric Oxide (FeNO) among Honduran Women. International Journal of Environmental Research and Public Health, 2018, 15, 2544.	2.6	10
104	Acute changes in lung function following controlled exposure to cookstove air pollution in the subclinical tests of volunteers exposed to smoke (STOVES) study. Inhalation Toxicology, 2020, 32, 115-123.	1.6	10
105	Aerosol Optical Properties and Climate Implications of Emissions from Traditional and Improved Cookstoves. Environmental Science & Technology, 2018, 52, 13647-13656.	10.0	9
106	Dynamic classification of personal microenvironments using a suite of wearable, low-cost sensors. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 962-970.	3.9	9
107	Study protocol for a stepped-wedge randomized cookstove intervention in rural Honduras: household air pollution and cardiometabolic health. BMC Public Health, 2019, 19, 903.	2.9	8
108	The Relationship Between MAIAC Smoke Plume Heights and Surface PM. Geophysical Research Letters, 2020, 47, e2020GL088949.	4.0	8

#	Article	IF	CITATIONS
109	Design and performance of UPAS inlets for respirable and thoracic mass sampling. Journal of Occupational and Environmental Hygiene, 2020, 17, 274-282.	1.0	8
110	Impact of the wood-burning Justa cookstove on fine particulate matter exposure: A stepped-wedge randomized trial in rural Honduras. Science of the Total Environment, 2021, 767, 144369.	8.0	8
111	Design and Computational Fluid Dynamics Investigation of a Personal, High Flow Inhalable Sampler. Annals of Occupational Hygiene, 2010, 54, 427-42.	1.9	7
112	Short-term markers of DNA damage among roofers who work with hot asphalt. Environmental Health, 2016, 15, 99.	4.0	7
113	Câ€reactive protein from dried blood spots: Application to household air pollution field studies. Indoor Air, 2020, 30, 24-30.	4.3	7
114	Comparing regional stoveâ \in usage patterns and using those patterns to model indoor air quality impacts. Indoor Air, 2020, 30, 521-533.	4.3	7
115	A High-throughput, Robotic System for Analysis of Aerosol Sampling Filters. Aerosol and Air Quality Research, 2021, 21, 210037.	2.1	7
116	Sampling efficiency of modified 37-mm sampling cassettes using computational fluid dynamics. Journal of Occupational and Environmental Hygiene, 2016, 13, 148-158.	1.0	6
117	An expert survey on the material types used to start cookstoves. Energy for Sustainable Development, 2019, 48, 59-66.	4.5	6
118	Characterization of Particulate Matter Emissions From a Four-Stroke, Lean-Burn, Natural Gas Engine. Journal of Engineering for Gas Turbines and Power, 2008, 130, .	1.1	5
119	A Rotating Bluff-Body Disc for Reduced Variability in Wind Tunnel Aerosol Studies. Annals of Occupational Hygiene, 2011, 55, 86-96.	1.9	5
120	Nanoscale aerovirology: An efficient yet simple method to analyze the viral distribution of single bioaerosols. Aerosol Science and Technology, 2016, 50, 732-739.	3.1	5
121	Performance of prototype high-flow inhalable dust sampler in a livestock production facility. Journal of Occupational and Environmental Hygiene, 2017, 14, 313-322.	1.0	5
122	Electrochemical dithiothreitol assay for large-scale particulate matter studies. Aerosol Science and Technology, 2019, 53, 268-275.	3.1	5
123	Acute differences in blood lipids and inflammatory biomarkers following controlled exposures to cookstove air pollution in the STOVES study. International Journal of Environmental Health Research, 2020, , 1-14.	2.7	5
124	Control Methods for Mineral Oil Mists. Journal of Occupational and Environmental Hygiene, 2003, 18, 883-889.	0.4	4
125	Absence of14C in PM2.5 Emissions from Gasohol Combustion in Small Engines. Aerosol Science and Technology, 2006, 40, 657-663.	3.1	4
126	Performance evaluation of disposable inhalable aerosol sampler at a copper electrorefinery. Journal of Occupational and Environmental Hygiene, 2019, 16, 250-257.	1.0	4

#	Article	IF	CITATIONS
127	Emissions and radiative impacts of sub-10 nm particles from biofuel and fossil fuel cookstoves. Aerosol Science and Technology, 2020, 54, 1231-1243.	3.1	4
128	An Aerosol Generation System for the Production of Respirable Grain Dust. Journal of Occupational and Environmental Hygiene, 1998, 13, 122-126.	0.4	3
129	Novel Instrument to Separate Large Inhalable Particles. Aerosol Science and Technology, 2015, 49, 1195-1209.	3.1	3
130	Assessment of increased sampling pump flow rates in a disposable, inhalable aerosol sampler. Journal of Occupational and Environmental Hygiene, 2017, 14, 207-213.	1.0	3
131	Aerosol emissions from wind instruments: effects of performer age, sex, sound pressure level, and bell covers. Scientific Reports, 2022, 12, .	3.3	3
132	Effects of household and participant characteristics on personal exposure and kitchen concentration of fine particulate matter and black carbon in rural Honduras. Environmental Research, 2022, 214, 113869.	7.5	3
133	A method for the improved detection of aerosolized influenza viruses and the male-specific (F+) RNA coliphage MS2. Journal of Virological Methods, 2017, 246, 38-41.	2.1	2
134	The power of the crowd: Prospects and pitfalls for citizen science in occupational health. Journal of Occupational and Environmental Hygiene, 2019, 16, 191-198.	1.0	2
135	Bayesian nonparametric monotone regression. Environmetrics, 2020, 31, e2642.	1.4	2
136	Envisioning ARPA : A Transdisciplinary Institution for Radical Climate Research and Intervention. Earth's Future, 2021, 9, e2021EF002115.	6.3	2
137	A low-cost monitor for simultaneous measurement of fine particulate matter and aerosol optical depth – PartÂ3: Automation and design improvements. Atmospheric Measurement Techniques, 2021, 14, 6023-6038.	3.1	2
138	A direct-reading particle sizer with elemental composition analysis for large inhalable particles. Aerosol Science and Technology, 0, , 1-11.	3.1	2
139	Reduced Black Carbon Concentrations following a Three-Year Stepped-Wedge Randomized Trial of the Wood-Burning <i>Justa</i> Cookstove in Rural Honduras. Environmental Science and Technology Letters, 2022, 9, 538-542.	8.7	2
140	Aerosol Size Distribution in the Schwartzwalder Uranium Mine. Health Physics, 2014, 106, S20-S24.	0.5	1
141	Detection of Viruses from Bioaerosols Using Anion Exchange Resin. Journal of Visualized Experiments, 2018, , .	0.3	1
142	Emerging investigator series: oxidative potential of diesel exhaust particles: role of fuel, engine load, and emissions control. Environmental Sciences: Processes and Impacts, 2019, 21, 819-830.	3.5	1
143	Field Evaluation of the Ultrasonic Personal Aerosol Sampler (UPAS) for Respirable Dust Exposure in a Taconite Mine. Annals of Work Exposures and Health, 2021, 65, 127-135.	1.4	1
144	Can Modifications Make Electric Pressure Cookers â€~Minigrid Friendly?'. , 2020, , .		1

Can Modifications Make Electric Pressure Cookers $\hat{a} {\in} \tilde{}$ Minigrid Friendly? $\hat{a} {\in} \mathbb{M}$, 2020, , . 144

9

#	Article	IF	CITATIONS
145	Household air pollution from wood-burning cookstoves and C-reactive protein among women in rural Honduras. International Journal of Hygiene and Environmental Health, 2022, 241, 113949.	4.3	1
146	Response to Comment on "Electrostatic Sampler for Semivolatile Aerosols:  Chemical Artifacts―and "Filter and Electrostatic Samplers for Semivolatile Aerosols:  Physical Artifacts― Environmental Science & Technology, 2003, 37, 2023-2023.	10.0	0
147	Direct, Air-to-Cell Deposition of Coarse Particulate Matter Increases the Inflammatory Response In Vitro , 2009, , .		0
148	An Adaptive Green Zone Strategy for Hybrid Electric Vehicle Control. , 2018, , .		0
149	AlHce Education Sessions. The Synergist / American Industrial Hygiene Association, 2007, 18, 50.	1.0	0
150	Characterization of Particulate Matter Emissions From a 4-Stroke, Lean-Burn, Natural Gas Engine. , 2007, , .		0
151	Health Endpoints Assessed During the Baseline Year of an Improved Cookstove Intervention Among Nicaraguan Women. Epidemiology, 2009, 20, S216-S217.	2.7	0
152	Infinite Hidden Markov Models for Multiple Multivariate Time Series with Missing Data. Biometrics, 2023, 79, 2592-2604.	1.4	0