
Christian Maueröder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6015017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death and Differentiation, 2021, 28, 3125-3139.	5.0	189
2	Neutrophil Extracellular Traps Initiate Gallstone Formation. Immunity, 2019, 51, 443-450.e4.	6.6	115
3	Citrullination Licenses Calpain to Decondense Nuclei in Neutrophil Extracellular Trap Formation. Frontiers in Immunology, 2019, 10, 2481.	2.2	41
4	Treatment with DNases rescues hidden neutrophil elastase from aggregated NETs. Journal of Leukocyte Biology, 2019, 106, 1359-1366.	1.5	25
5	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
6	Frontline Science: Aggregated neutrophil extracellular traps prevent inflammation on the neutrophil-rich ocular surface. Journal of Leukocyte Biology, 2019, 105, 1087-1098.	1.5	43
7	To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death and Differentiation, 2019, 26, 395-408.	5.0	295
8	Chemical Tools for Targeted Amplification of Reactive Oxygen Species in Neutrophils. Frontiers in Immunology, 2018, 9, 1827.	2.2	27
9	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	1.6	505
10	Inosine Released from Dying or Dead Cells Stimulates Cell Proliferation via Adenosine Receptors. Frontiers in Immunology, 2017, 8, 504.	2.2	18
11	Capability of Neutrophils to Form NETs Is Not Directly Influenced by a CMA-Targeting Peptide. Frontiers in Immunology, 2017, 8, 16.	2.2	12
12	Experimental lupus is aggravated in mouse strains with impaired induction of neutrophil extracellular traps. JCI Insight, 2017, 2, .	2.3	115
13	Oxidative Burst-Dependent NETosis Is Implicated in the Resolution of Necrosis-Associated Sterile Inflammation. Frontiers in Immunology, 2016, 7, 557.	2.2	55
14	Ménage-Ã-Trois: The Ratio of Bicarbonate to CO2 and the pH Regulate the Capacity of Neutrophils to Form NETs. Frontiers in Immunology, 2016, 7, 583.	2.2	112
15	Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis. Nature Communications, 2016, 7, 10973.	5.8	207
16	Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5856-E5865.	3.3	128
17	Neutrophils and neutrophil extracellular traps orchestrate initiation and resolution of inflammation. Clinical and Experimental Rheumatology, 2016, 34, 6-8.	0.4	34
18	Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 588.	2.2	317

#	Article	IF	CITATIONS
19	Inflammatory etiopathogenesis of systemic lupus erythematosus: an update. Journal of Inflammation Research, 2015, 8, 161.	1.6	72
20	How neutrophil extracellular traps orchestrate the local immune response in gout. Journal of Molecular Medicine, 2015, 93, 727-734.	1.7	61
21	The role of dead cell clearance in the etiology and pathogenesis of systemic lupus erythematosus: dendritic cells as potential targets. Expert Review of Clinical Immunology, 2014, 10, 1151-1164.	1.3	65
22	Tumor Immunotherapy: Lessons from Autoimmunity. Frontiers in Immunology, 2014, 5, 212.	2.2	18
23	The Progression of Cell Death Affects the Rejection of Allogeneic Tumors in Immune-Competent Mice ââ,¬â€œ Implications for Cancer Therapy. Frontiers in Immunology, 2014, 5, 560.	2.2	20
24	An outer membrane channel protein of <i>Mycobacterium tuberculosis</i> with exotoxin activity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6750-6755.	3.3	102
25	UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice. Autoimmunity, 2013, 46, 317-322.	1.2	26
26	Colourful death: Six-parameter classification of cell death by flow cytometry—Dead cells tell tales. Autoimmunity, 2013, 46, 336-341.	1.2	53
27	Model systems for rapid and slow induction of apoptosis obtained by inducible expression of pro-apoptotic proteins. Autoimmunity, 2013, 46, 329-335.	1.2	10
28	Navigation to the Graveyard-Induction of Various Pathways of Necrosis and Their Classification by Flow Cytometry. Methods in Molecular Biology, 2013, 1004, 3-15.	0.4	31
29	Surface code—biophysical signals for apoptotic cell clearance. Physical Biology, 2013, 10, 065007.	0.8	38