Simona Masiero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6014960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42, 833-839.	9.4	1,891
2	A Complex Containing PGRL1 and PGR5 Is Involved in the Switch between Linear andÂCyclic Electron Flow in Arabidopsis. Cell, 2008, 132, 273-285.	13.5	496
3	SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14947-14952.	3.3	372
4	Genetic and Molecular Interactions between BELL1 and MADS Box Factors Support Ovule Development in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 2544-2556.	3.1	178
5	The Emerging Importance of Type I MADS Box Transcription Factors for Plant Reproduction. Plant Cell, 2011, 23, 865-872.	3.1	177
6	Functional Characterization of OsMADS18, a Member of the AP1/SQUA Subfamily of MADS Box Genes. Plant Physiology, 2004, 135, 2207-2219.	2.3	164
7	Multiple AGAMOUS Homologs from Cucumber and Petunia Differ in Their Ability to Induce Reproductive Organ Fate. Plant Cell, 1998, 10, 171-182.	3.1	154
8	TCP14 and TCP15 Mediate the Promotion of Seed Germination by Gibberellins in Arabidopsis thaliana. Molecular Plant, 2015, 8, 482-485.	3.9	139
9	<i>AGL23</i> , a type I MADSâ€box gene that controls female gametophyte and embryo development in Arabidopsis. Plant Journal, 2008, 54, 1037-1048.	2.8	130
10	Nuclear Photosynthetic Gene Expression Is Synergistically Modulated by Rates of Protein Synthesis in Chloroplasts and Mitochondria. Plant Cell, 2006, 18, 970-991.	3.1	117
11	Fruit ripening: the role of hormones, cell wall modifications, and their relationship with pathogens. Journal of Experimental Botany, 2019, 70, 2993-3006.	2.4	112
12	Cytoplasmic N-Terminal Protein Acetylation Is Required for Efficient Photosynthesis in Arabidopsis[W]. Plant Cell, 2003, 15, 1817-1832.	3.1	107
13	Maternal Control of PIN1 Is Required for Female Gametophyte Development in Arabidopsis. PLoS ONE, 2013, 8, e66148.	1.1	106
14	An integrative model of the control of ovule primordia formation. Plant Journal, 2013, 76, 446-455.	2.8	105
15	Ternary Complex Formation between MADS-box Transcription Factors and the Histone Fold Protein NF-YB. Journal of Biological Chemistry, 2002, 277, 26429-26435.	1.6	104
16	GUN1 Controls Accumulation of the Plastid Ribosomal Protein S1 at the Protein Level and Interacts with Proteins Involved in Plastid Protein Homeostasis. Plant Physiology, 2016, 170, 1817-1830.	2.3	100
17	INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Development (Cambridge), 2004, 131, 5981-5990.	1.2	94
18	Genetic regulation and structural changes during tomato fruit development and ripening. Frontiers in Plant Science, 2014, 5, 124.	1.7	94

SIMONA MASIERO

#	Article	IF	CITATIONS
19	Mutants, Overexpressors, and Interactors of Arabidopsis Plastocyanin Isoforms: Revised Roles of Plastocyanin in Photosynthetic Electron Flow and Thylakoid Redox State. Molecular Plant, 2009, 2, 236-248.	3.9	92
20	Comparative analysis of rice MADS-box genes expressed during flower development. Sexual Plant Reproduction, 2002, 15, 113-122.	2.2	91
21	Versatile roles of Arabidopsis plastid ribosomal proteins in plant growth and development. Plant Journal, 2012, 72, 922-934.	2.8	89
22	Cross talk between the sporophyte and the megagametophyte during ovule development. Sexual Plant Reproduction, 2011, 24, 113-121.	2.2	85
23	MADS Domain Transcription Factors Mediate Short-Range DNA Looping That Is Essential for Target Gene Expression in Arabidopsis. Plant Cell, 2013, 25, 2560-2572.	3.1	65
24	Differential expression patterns of arabinogalactan proteins in Arabidopsis thaliana reproductive tissues. Journal of Experimental Botany, 2014, 65, 5459-5471.	2.4	65
25	Breeding for grapevine downy mildew resistance: aÂreviewÂof "omics―approaches. Euphytica, 2017, 213, 1.	0.6	65
26	Expression-based and co-localization detection of arabinogalactan protein 6 and arabinogalactan protein 11 interactors in Arabidopsis pollen and pollen tubes. BMC Plant Biology, 2013, 13, 7.	1.6	61
27	"Love Is Strong, and You're so Sweetâ€: JAGCER Is Essential for Persistent Synergid Degeneration and Polytubey Block in Arabidopsis thaliana. Molecular Plant, 2016, 9, 601-614.	3.9	60
28	BRANCHED SILKLESSmediates the transition from spikelet to floral meristem duringZea maysear development. Plant Journal, 1998, 16, 355-363.	2.8	45
29	Characterization of TM8, a MADS-box gene expressed in tomato flowers. BMC Plant Biology, 2014, 14, 319.	1.6	44
30	Seed abscission and fruit dehiscence required for seed dispersal rely on similar genetic networks. Development (Cambridge), 2016, 143, 3372-81.	1.2	40
31	The Arabidopsis NF-YA3 and NF-YA8 Genes Are Functionally Redundant and Are Required in Early Embryogenesis. PLoS ONE, 2013, 8, e82043.	1.1	39
32	Time-Course Transcriptome Analysis of Arabidopsis Siliques Discloses Genes Essential for Fruit Development and Maturation. Plant Physiology, 2018, 178, 1249-1268.	2.3	37
33	The NAC side of the fruit: tuning of fruit development and maturation. BMC Plant Biology, 2021, 21, 238.	1.6	35
34	Peptide aptamers: The versatile role of specific protein function inhibitors in plant biotechnology. Journal of Integrative Plant Biology, 2015, 57, 892-901.	4.1	33
35	The plastid transcription machinery and its coordination with the expression of nuclear genome: Plastid-Encoded Polymerase, Nuclear-Encoded Polymerase and the Genomes Uncoupled 1-mediated retrograde communication. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190399.	1.8	28
36	The non-specific lipid transfer protein N5 of Medicago truncatula is implicated in epidermal stages of rhizobium-host interaction. BMC Plant Biology, 2012, 12, 233.	1.6	27

SIMONA MASIERO

#	Article	IF	CITATIONS
37	Emergent Ascomycetes in Viticulture: An Interdisciplinary Overview. Frontiers in Plant Science, 2019, 10, 1394.	1.7	26
38	NoPv1: a synthetic antimicrobial peptide aptamer targeting the causal agents of grapevine downy mildew and potato late blight. Scientific Reports, 2020, 10, 17574.	1.6	23
39	A CYCLOIDEA-like gene mutation in sunflower determines an unusual floret type able to produce filled achenes at the periphery of the pseudanthium. Botany, 2015, 93, 171-181.	O.5	21
40	Trans-splicing of plastid rps12 transcripts, mediated by AtPPR4, is essential for embryo patterning in Arabidopsis thaliana. Planta, 2018, 248, 257-265.	1.6	19
41	Transcriptomic Signatures in Seeds of Apple (Malus domestica L. Borkh) during Fruitlet Abscission. PLoS ONE, 2015, 10, e0120503.	1.1	19
42	SUPPRESSOR OF FRIGIDA (SUF4) Supports Gamete Fusion via Regulating Arabidopsis <i>EC1</i> Gene Expression. Plant Physiology, 2017, 173, 155-166.	2.3	18
43	CRP1 Protein: (dis)similarities between Arabidopsis thaliana and Zea mays. Frontiers in Plant Science, 2017, 8, 163.	1.7	17
44	Paving the Way for Fertilization: The Role of the Transmitting Tract. International Journal of Molecular Sciences, 2021, 22, 2603.	1.8	17
45	The Arabidopsis MADS-Domain Transcription Factor SEEDSTICK Controls Seed Size via Direct Activation of E2Fa. Plants, 2021, 10, 192.	1.6	15
46	Game-changing alternatives to conventional fungicides: small RNAs and short peptides. Trends in Biotechnology, 2022, 40, 320-337.	4.9	14
47	Fleshy seeds form in the basal Angiosperm <i>Magnolia grandiflora</i> and several MADSâ€box genes are expressed as fleshy seed tissues develop. Evolution & Development, 2015, 17, 82-91.	1.1	13
48	Multiple AGAMOUS Homologs from Cucumber and Petunia Differ in Their Ability to Induce Reproductive Organ Fate. Plant Cell, 1998, 10, 171.	3.1	12
49	ROSINA (RSI), a novel protein with DNA-binding capacity, acts during floral organ development in Antirrhinum majus. Plant Journal, 2005, 43, 238-250.	2.8	11
50	BbrizAGL6 Is Differentially Expressed During Embryo Sac Formation of Apomictic and Sexual Brachiaria brizantha Plants. Plant Molecular Biology Reporter, 2013, 31, 1397-1406.	1.0	10
51	ERAMOSA controls lateral branching in snapdragon. Scientific Reports, 2017, 7, 41319.	1.6	10
52	Genetic Interaction of SEEDSTICK, GORDITA and AUXIN RESPONSE FACTOR 2 during Seed Development. Genes, 2021, 12, 1189.	1.0	8
53	Expression and Functional Analyses of Nymphaea caerulea MADS-Box Genes Contribute to Clarify the Complex Flower Patterning of Water Lilies. Frontiers in Plant Science, 2021, 12, 730270.	1.7	5
54	HEBE, a novel positive regulator of senescence in Solanum lycopersicum. Scientific Reports, 2020, 10, 11021.	1.6	4

#	Article	IF	CITATIONS
55	Chlorophytum comosum: A Bio-Indicator for Assessing the Accumulation of Heavy Metals Present in The Aerosol Particulate Matter (PM). Applied Sciences (Switzerland), 2021, 11, 4348.	1.3	4