Kuo Ping Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/601487/publications.pdf

Version: 2024-02-01

257450 276875 1,752 79 24 41 citations g-index h-index papers 80 80 80 1990 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tamm Plasmonâ€Polariton Ultraviolet Lasers. Advanced Photonics Research, 2022, 3, .	3.6	15
2	Metal–Dielectric Polarization-Preserving Anisotropic Mirror for Chiral Optical Tamm State. Nanomaterials, 2022, 12, 234.	4.1	4
3	Development of surface plasmon polariton-based nanolasers. Journal of Applied Physics, 2022, 131, 011101.	2.5	0
4	Germanium Metasurfaces with Lattice Kerker Effect in Near-Infrared Photodetectors. ACS Nano, 2022, 16, 5994-6001.	14.6	26
5	Charge partitioning by intertwined metal-oxide nano-architectural networks for the photocatalytic dry reforming of methane. Chem Catalysis, 2022, 2, 321-329.	6.1	9
6	Nonscattering Photodetection in the Propagation of Unidirectional Surface Plasmon Polaritons Embedded with Graphene. ACS Applied Materials & Samp; Interfaces, 2022, 14, 30299-30305.	8.0	4
7	A Novel Hydrogen Sensor Based on a Guided-Mode Resonance Filter. IEEE Sensors Journal, 2021, 21, 2798-2804.	4.7	7
8	Critical coupling vortex with grating-induced high Q-factor optical Tamm states. Optics Express, 2021, 29, 4672.	3.4	14
9	Room-temperature active modulation of plasmonic nanolasers by current injection on hybrid graphene–insulator–metal platforms. Journal of Applied Physics, 2021, 129, .	2.5	6
10	Quasiâ€Bound States in the Continuum with Temperatureâ€Tunable Q Factors and Critical Coupling Point at Brewster's Angle. Laser and Photonics Reviews, 2021, 15, 2000290.	8.7	18
11	Quantifying photoinduced carriers transport in exciton–polariton coupling of MoS2 monolayers. Npj 2D Materials and Applications, 2021, 5, .	7.9	12
12	Chiral-Selective Tamm Plasmon Polaritons. Materials, 2021, 14, 2788.	2.9	11
13	Lowâ€Threshold Bound State in the Continuum Lasers in Hybrid Lattice Resonance Metasurfaces. Laser and Photonics Reviews, 2021, 15, 2100118.	8.7	59
14	Plasmon-induced Charge Transport at Transition Metal Nitride-Semiconductor Interfaces via In Situ Nanoimaging. , 2021, , .		0
15	Silicon nitride metasurfaces in structural colors and advanced coherent light sources. , 2021, , .		O
16	Experimental implementation of tunable hybrid Tamm-microcavity modes. Applied Physics Letters, 2021, 119, 161107.	3.3	7
17	Structural Colors and Lasers by Lattice Resonance in Silicon Nitride Metasurfaces. , 2021, , .		0
18	Hybridization of plasmonic and dielectric metasurfaces with asymmetric absorption enhancement. Journal of Applied Physics, 2020, 128, 133101.	2.5	11

#	Article	IF	CITATIONS
19	Direct Observation of Photoinduced Charge Separation at Transition-Metal Nitride–Semiconductor Interfaces. ACS Applied Materials & Interfaces, 2020, 12, 56562-56567.	8.0	10
20	Giant photothermal nonlinearity in a single silicon nanostructure. Nature Communications, 2020, 11, 4101.	12.8	42
21	Fano feature induced by a bound state in the continuum via resonant state expansion. Scientific Reports, 2020, 10, 13691.	3.3	14
22	Current Modulation of Plasmonic Nanolasers by Breaking Reciprocity on Hybrid Graphene–Insulator–Metal Platforms. Advanced Science, 2020, 7, 2001823.	11.2	17
23	Graphene-Loaded Plasmonic Zirconium Nitride and Gold Nanogroove Arrays for Surface-Charge Modifications. ACS Applied Nano Materials, 2020, 3, 5002-5007.	5.0	8
24	Narrowâ€Band Thermal Emitter with Titanium Nitride Thin Film Demonstrating High Temperature Stability. Advanced Optical Materials, 2020, 8, 1900982.	7.3	34
25	Structural Colors Enabled by Lattice Resonance on Silicon Nitride Metasurfaces. ACS Nano, 2020, 14, 5678-5685.	14.6	91
26	Plasmonic Nanolasers: Current Modulation of Plasmonic Nanolasers by Breaking Reciprocity on Hybrid Graphene–Insulator–Metal Platforms (Adv. Sci. 24/2020). Advanced Science, 2020, 7, 2070134.	11.2	0
27	Strong coupling in a ID plasmonic-exciton hybrid systems. , 2020, , .		1
28	Absorption avoided resonance crossing of hybridization of silicon nanoparticles and gold nanoantennas. Scientific Reports, 2019, 9, 11778.	3.3	4
29	Plasmonic Nanolasers Enhanced by Hybrid Graphene–Insulator–Metal Structures. Nano Letters, 2019, 19, 5017-5024.	9.1	43
30	Study of Plasmonic Nanolasers with Graphene–Metal Interaction. , 2019, , .		0
31	Engineered nonlinear materials using gold nanoantenna array. Scientific Reports, 2018, 8, 780.	3.3	11
32	Optimization of effective absorption enhancement of paired-strips gold nanoantennas arrays in organic thin-films. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	1
33	Nonradiating Silicon Nanoantenna Metasurfaces as Narrowband Absorbers. ACS Photonics, 2018, 5, 2596-2601.	6.6	86
34	Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays. Nano Letters, 2018, 18, 747-753.	9.1	56
35	High-Performance Plasmonic Nanolasers with a Nanotrench Defect Cavity for Sensing Applications. ACS Photonics, 2018, 5, 2638-2644.	6.6	28
36	Liquid-Crystal Active Tamm-Plasmon Devices. Physical Review Applied, 2018, 9, .	3.8	36

3

#	Article	IF	Citations
37	Optical Tamm states at the interface between a photonic crystal and an epsilon-near-zero nanocomposite. Journal of Optics (United Kingdom), 2017, 19, 085103.	2.2	13
38	Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons. ACS Photonics, 2017, 4, 2212-2219.	6.6	164
39	Liquid-crystal tunable color filters based on aluminum metasurfaces. Optics Express, 2017, 25, 30764.	3.4	41
40	Phase sensitive sensor on Tamm plasmon devices. Optical Materials Express, 2017, 7, 1267.	3.0	46
41	Tamm plasmon selective thermal emitters. Optics Letters, 2016, 41, 4453.	3.3	58
42	Strong coupling of gold dipolar nanoantennas by symmetry-breaking in evanescent wave. , 2016, , .		0
43	Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal. RSC Advances, 2016, 6, 84500-84504.	3.6	11
44	Broadband gold nanoantennas arrays with transverse dimension effects. Optics Express, 2016, 24, 17760.	3.4	7
45	Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals. Optics Express, 2016, 24, 16815.	3.4	23
46	Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas. Scientific Reports, 2016, 6, 32194.	3.3	7
47	Room temperature fabrication of titanium nitride thin films as plasmonic materials by high-power impulse magnetron sputtering. Optical Materials Express, 2016, 6, 540.	3.0	34
48	Plasmonic enhancement of Au nanoparticleâ€"embedded single-crystalline ZnO nanowire dye-sensitized solar cells. Nano Energy, 2016, 20, 264-271.	16.0	48
49	Enhancing the Interaction between High-Refractive Index Nanoparticles and Gold Film Substrates Based on Oblique Incidence Excitation. ACS Omega, 2016, 1, 613-619.	3.5	27
50	Optical Tamm States in Liquid Photonic Crystal and Metasurface., 2016,,.		0
51	Hybridization models of gold nanoantennas arrays in polarization dependent evanescent waves (Presentation Recording). Proceedings of SPIE, 2015, , .	0.8	0
52	Tunability and Optimization of Coupling Efficiency in Tamm Plasmon Modes. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 262-267.	2.9	32
53	High Sensitivity Dark Mode Plasmonic Resonance of Gold Nanoantennas Arrays in Evanescent Waves. , 2015, , .		0
54	Effective absorption enhancement in dielectric thin-films with embedded paired-strips gold nanoantennas. Optics Express, 2014, 22, 12737.	3.4	6

#	Article	IF	CITATIONS
55	Controllable Tamm plasmon effect designed by admittance loci. , 2014, , .		O
56	Observation of the high-sensitivity plasmonic dipolar antibonding mode of gold nanoantennas in evanescent waves. Applied Physics Letters, 2014, 105, 031117.	3.3	8
57	Effective absorption enhancement in dielectric slab with embedded single-strip and paired-strips gold nanoantennas. , 2013 , , .		0
58	SPR biosensor using gold nanoantenna arrays in Kretchmann configuration., 2013,,.		0
59	Near-Field Enhancement of Plasmonics Paired-Strips Nanoantennas. , 2013, , .		0
60	Metal nanoslit lenses with polarization-selective design. Optics Letters, 2011, 36, 451.	3.3	78
61	Metal nanoslit lenses with polarization-selective design: erratum. Optics Letters, 2011, 36, 1244.	3.3	3
62	Gold Nanoslit Lenses., 2011,,.		1
63	Numerical Modeling of Plasmonic Nanoantennas with Realistic 3D Roughness and Distortion. Sensors, 2011, 11, 7178-7187.	3.8	15
64	Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing. Applied Physics Letters, $2010, 97, .$	3.3	49
65	Two-photon Absorption Enhancement with Gold Nanoantenna Array. , 2010, , .		0
66	FE modeling of plasmonic nanoantennas with realistic 3D roughness and distortion. , 2010, , .		0
67	Refractive index and dielectric constant transition of ultra-thin gold from cluster to Film. Optics Express, 2010, 18, 24859.	3.4	35
68	Experimental verification of two-dimensional spatial harmonic analysis at oblique light incidence. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 2465.	2.1	14
69	Drude Relaxation Rate in Grained Gold Nanoantennas. Nano Letters, 2010, 10, 916-922.	9.1	176
70	Improving Plasmonic Nanoantennas. , 2010, , .		0
71	SHA Modeling of Gold Gratings for Oblique Light Incidence. , 2010, , .		0
72	Simplified model for periodic nanoantennae: linear model and inverse design. Optics Express, 2009, 17, 11607.	3.4	13

#	Article	IF	CITATIONS
73	Improving Au Nanoantenna Resonance by Annealing. , 2008, , .		1
74	Admittance loci design method for multilayer surface plasmon resonance devices. Sensors and Actuators B: Chemical, 2006, 117, 219-229.	7.8	47
75	Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 2006, 113, 169-176.	7.8	78
76	Bio-Plasmonics: Nano/micro Structure of Surface Plasmon Resonance Devices for Biomedicine. Optical and Quantum Electronics, 2005, 37, 1423-1437.	3.3	31
77	Surface plasmon resonance device with dielectric mirror for biochemical sensing., 2004, 2004, 1972-4.		0
78	Bio-plasmonics nano/micro structure of surface plasmon resonance devices for biomedicine. , 0, , .		0
79	Plasmonics and hot electrons: feature issue introduction. Optical Materials Express, 0, , .	3.0	0