Chaturbhuj K Saurabh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6014607/publications.pdf

Version: 2024-02-01

24 papers 1,559 citations

16 h-index 759306 22 g-index

24 all docs

24 docs citations

24 times ranked

2498 citing authors

#	Article	IF	Citations
1	Development of grape pomace extract based edible coating for shelf life extension of pomegranate arils. Journal of Food Measurement and Characterization, 2022, 16, 590-597.	1.6	4
2	Value-Added Utilization of Agro-Waste Derived Oil Palm Ash in Epoxy Composites. Journal of Renewable Materials, 2019, 7, 1269-1278.	1.1	5
3	Barrier properties of biocomposites/hybrid films. , 2019, , 241-258.		9
4	Development of guar gum based active packaging films using grape pomace. Journal of Food Science and Technology, 2018, 55, 1982-1992.	1.4	23
5	The Role of Bamboo Nanoparticles in Kenaf Fiber Reinforced Unsaturated Polyester Composites. Journal of Renewable Materials, 2018, 6, 75-86.	1.1	19
6	Biodegradable Films for Fruits and Vegetables Packaging Application: Preparation and Properties. Food Engineering Reviews, 2018, 10, 139-153.	3.1	90
7	Synergistic Effect of Oil Palm Based Pozzolanic Materials/Oil Palm Waste on Polyester Hybrid Composite. Journal of Polymers and the Environment, 2018, 26, 4063-4072.	2.4	8
8	Incorporation of coconut shell based nanoparticles in kenaf/coconut fibres reinforced vinyl ester composites. Materials Research Express, 2017, 4, 035020.	0.8	30
9	Seaweed based sustainable films and composites for food and pharmaceutical applications: A review. Renewable and Sustainable Energy Reviews, 2017, 77, 353-362.	8.2	136
10	Preparation and Fundamental Characterization of Cellulose Nanocrystal from Oil Palm Fronds Biomass. Journal of Polymers and the Environment, 2017, 25, 692-700.	2.4	33
11	Oil Palm Shell Nanofiller in Seaweed-based Composite Film: Mechanical, Physical, and Morphological Properties. BioResources, 2017, 12, .	0.5	20
12	Spectroscopy and microscopy of microfibrillar and nanofibrillar composites., 2017,, 279-299.		2
13	Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. EXPRESS Polymer Letters, 2017, 11, 244-265.	1.1	168
14	Supercritical Carbon Dioxide Treated Kenaf Bast Pulp Fiber Reinforcement in Epoxy Composite. Journal of Renewable Materials, 2017, 5, 380-387.	1.1	1
15	Effect of Hydrolysis Treatment on Cellulose Nanowhiskers from Oil Palm (Elaeis guineesis) Fronds: Morphology, Chemical, Crystallinity, and Thermal Characteristics. BioResources, 2016, 11, .	0.5	23
16	Cellulosic Pulp Fiber as Reinforcement Materials in Seaweed-Based Film. BioResources, 2016, 12, .	0.5	8
17	Isolation and Characterization of Cellulose Nanofibers from <i>Gigantochloa scortechinii</i> as a Reinforcement Material. Journal of Nanomaterials, 2016, 2016, 1-8.	1.5	42
18	Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review. Materials, 2016, 9, 435.	1.3	122

#	Article	IF	CITATIONS
19	A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydrate Polymers, 2016, 150, 216-226.	5.1	394
20	A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications. Renewable and Sustainable Energy Reviews, 2016, 64, 823-836.	8.2	210
21	Effect of addition of nanoclay, beeswax, tween-80 and glycerol on physicochemical properties of guar gum films. Industrial Crops and Products, 2016, 89, 109-118.	2.5	57
22	Mechanical and barrier properties of guar gum based nano-composite films. Carbohydrate Polymers, 2015, 124, 77-84.	5.1	80
23	Comparative analysis of dietary fiber activities of enzymatic and gamma depolymerized guar gum. Food Hydrocolloids, 2015, 48, 149-154.	5.6	22
24	Radiation dose dependent change in physiochemical, mechanical and barrier properties of guar gum based films. Carbohydrate Polymers, 2013, 98, 1610-1617.	5.1	53