
Dong-Ho Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6014573/publications.pdf Version: 2024-02-01

DONG-HO KIM

#	Article	IF	CITATIONS
1	In situ electrochemical surface modification of Au electrodes for simultaneous label-free SERS detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 2022, 353, 131196.	7.8	30
2	Three-Dimensional Hot-Volume Plasmonic Gold Nanoreactor Array for Ultrasensitive Immunoassays. ACS Applied Nano Materials, 2022, 5, 4269-4280.	5.0	2
3	Organometallic hotspot engineering for ultrasensitive EC-SERS detection of pathogenic bacteria-derived DNAs. Biosensors and Bioelectronics, 2022, 210, 114325.	10.1	17
4	Smallâ€Volume Plasmonic Microwell Array with 3D Hierarchical Nanomaterials for Plasmonâ€Enhanced Fluorescence Immunoassay. Advanced NanoBiomed Research, 2021, 1, 2000015.	3.6	5
5	Rapid and sensitive multiplex molecular diagnosis of respiratory pathogens using plasmonic isothermal RPA array chip. Biosensors and Bioelectronics, 2021, 182, 113167.	10.1	11
6	Plasmonic contact lens materials for glucose sensing in human tears. Sensors and Actuators B: Chemical, 2021, 344, 130297.	7.8	28
7	A Wearable Surface-Enhanced Raman Scattering Sensor for Label-Free Molecular Detection. ACS Applied Materials & Interfaces, 2021, 13, 3024-3032.	8.0	70
8	In Situ Electrodeposition of Gold Nanostructures in 3D Ultraâ€Thin Hydrogel Skins for Direct Molecular Detection in Complex Mixtures with High Sensitivity. Laser and Photonics Reviews, 2021, 15, 2100316.	8.7	9
9	Plasmonic Microgels for Raman-Based Molecular Detection Created by Simultaneous Photoreduction and Photocross-linking. ACS Applied Materials & amp; Interfaces, 2020, 12, 48188-48197.	8.0	14
10	Quasi-3D Plasmonic Nanowell Array for Molecular Enrichment and SERS-Based Detection. Nanomaterials, 2020, 10, 939.	4.1	3
11	3D-assembled Ag nanowires for use in plasmon-enhanced spectroscopic sensors. Applied Spectroscopy Reviews, 2019, 54, 325-347.	6.7	12
12	Highly Sensitive and Selective Nanogap-Enhanced SERS Sensing Platform. Nanomaterials, 2019, 9, 619.	4.1	9
13	Compact Integration of TiO2 Nanoparticles into the Cross-Points of 3D Vertically Stacked Ag Nanowires for Plasmon-Enhanced Photocatalysis. Nanomaterials, 2019, 9, 468.	4.1	17
14	Microfluidic Designing Microgels Containing Highly Concentrated Gold Nanoparticles for SERS Analysis of Complex Fluids. Small, 2019, 15, e1905076.	10.0	32
15	M13 Bacteriophage/Silver Nanowire Surface-Enhanced Raman Scattering Sensor for Sensitive and Selective Pesticide Detection. ACS Applied Materials & Interfaces, 2018, 10, 10388-10397.	8.0	69
16	SERSâ€Activeâ€Charged Microgels for Size―and Chargeâ€5elective Molecular Analysis of Complex Biological Samples. Small, 2018, 14, e1802520.	10.0	40
17	Highly sensitive and on-site NO ₂ SERS sensors operated under ambient conditions. Analyst, The, 2018, 143, 3006-3010.	3.5	27
18	Holographic Fabrication of 3D Nanostructures. Advanced Materials Interfaces, 2018, 5, 1800330.	3.7	17

Dong-Ho Кім

#	Article	IF	CITATIONS
19	Nanostructured plasmonic substrates for use as SERS sensors. Nano Convergence, 2016, 3, 18.	12.1	99
20	Fabrication of Au-Decorated 3D ZnO Nanostructures as Recyclable SERS Substrates. IEEE Sensors Journal, 2016, 16, 3382-3386.	4.7	16
21	Metal Nanoparticle-Loaded Microgels with Selective Permeability for Direct Detection of Small Molecules in Biological Fluids. Chemistry of Materials, 2016, 28, 1559-1565.	6.7	34
22	Standingâ€Waveâ€Assisted Creation of Nanopillar Arrays with Vertically Integrated Nanogaps for SERSâ€Active Substrates. Advanced Functional Materials, 2015, 25, 4681-4688.	14.9	49
23	3D Hybrid Plasmonic Nanomaterials for Highly Efficient Optical Absorbers and Sensors. Advanced Materials, 2015, 27, 4290-4295.	21.0	69