Paolo Samorì

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/601441/publications.pdf Version: 2024-02-01

		6592	12558
384	22,741	79	132
papers	citations	h-index	g-index
413	413	413	25701
all docs	docs citations	times ranked	citing authors

ΡΛΟΙΟ SAMORÃ-

#	Article	lF	CITATIONS
1	Grapheneviasonication assisted liquid-phase exfoliation. Chemical Society Reviews, 2014, 43, 381-398.	18.7	976
2	Chemical sensing with 2D materials. Chemical Society Reviews, 2018, 47, 4860-4908.	18.7	513
3	Cyclodextrin-threaded conjugated polyrotaxanes as insulated molecular wires with reduced interstrand interactions. Nature Materials, 2002, 1, 160-164.	13.3	471
4	2D Materials Beyond Graphene for Highâ€Performance Energy Storage Applications. Advanced Energy Materials, 2016, 6, 1600671.	10.2	436
5	Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chemical Society Reviews, 2016, 45, 118-151.	18.7	423
6	Adsorption of Aromatic and Anti-Aromatic Systems on Graphene through Ï€â^'Ï€ Stacking. Journal of Physical Chemistry Letters, 2010, 1, 3407-3412.	2.1	344
7	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
8	Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nature Nanotechnology, 2016, 11, 769-775.	15.6	300
9	Organic Radical-Assisted Electrochemical Exfoliation for the Scalable Production of High-Quality Graphene. Journal of the American Chemical Society, 2015, 137, 13927-13932.	6.6	288
10	High-Contrast Visualization of Graphene Oxide on Dye-Sensitized Glass, Quartz, and Silicon by Fluorescence Quenching. Journal of the American Chemical Society, 2009, 131, 15576-15577.	6.6	280
11	Lightâ€Powered Electrical Switch Based on Cargoâ€Lifting Azobenzene Monolayers. Angewandte Chemie - International Edition, 2008, 47, 3407-3409.	7.2	276
12	Towards Supramolecular Engineering of Functional Nanomaterials: Preâ€Programming Multiâ€Component 2D Selfâ€Assembly at Solid‣iquid Interfaces. Advanced Materials, 2010, 22, 3506-3520.	11,1	276
13	Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9937-9942.	3.3	273
14	25th Anniversary Article: Organic Electronics Marries Photochromism: Generation of Multifunctional Interfaces, Materials, and Devices. Advanced Materials, 2014, 26, 1827-1845.	11.1	259
15	Azobenzenes as Light-Controlled Molecular Electronic Switches in Nanoscale Metalâ~'Moleculeâ~'Metal Junctions. Journal of the American Chemical Society, 2008, 130, 9192-9193.	6.6	257
16	Coherent Coupling of WS ₂ Monolayers with Metallic Photonic Nanostructures at Room Temperature. Nano Letters, 2016, 16, 4368-4374.	4.5	256
17	Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration. Journal of Physical Chemistry Letters, 2016, 7, 561-566.	2.1	234
18	Nonvolatile Memories Based on Graphene and Related 2D Materials. Advanced Materials, 2019, 31, e1806663.	11.1	230

#	Article	IF	CITATIONS
19	Optically switchable transistor via energy-level phototuning in a bicomponent organic semiconductor. Nature Chemistry, 2012, 4, 675-679.	6.6	217
20	Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nature Communications, 2016, 7, 11118.	5.8	217
21	Dispersibilityâ€Dependent Biodegradation of Graphene Oxide by Myeloperoxidase. Small, 2015, 11, 3985-3994.	5.2	215
22	Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2018, 47, 6845-6888.	18.7	202
23	When 2D Materials Meet Molecules: Opportunities and Challenges of Hybrid Organic/Inorganic van der Waals Heterostructures. Advanced Materials, 2018, 30, e1706103.	11.1	194
24	Self-Assembly of a Conjugated Polymer: From Molecular Rods to a Nanoribbon Architecture with Molecular Dimensions. Chemistry - A European Journal, 1999, 5, 2312-2317.	1.7	191
25	Molecular Self-Assembly across Multiple Length Scales. Angewandte Chemie - International Edition, 2007, 46, 4428-4432.	7.2	181
26	Predicting self-assembly: from empirism to determinism. Chemical Society Reviews, 2012, 41, 3713.	18.7	179
27	Tuning the Workâ€Function Via Strong Coupling. Advanced Materials, 2013, 25, 2481-2485.	11.1	177
28	Processing of giant graphene molecules by soft-landing mass spectrometry. Nature Materials, 2006, 5, 276-280.	13.3	172
29	Nanoscale Quantitative Measurement of the Potential of Charged Nanostructures by Electrostatic and Kelvin Probe Force Microscopy: Unraveling Electronic Processes in Complex Materials. Accounts of Chemical Research, 2010, 43, 541-550.	7.6	167
30	Engineering Chemically Active Defects in Monolayer MoS ₂ Transistors via Ionâ€Beam Irradiation and Their Healing via Vapor Deposition of Alkanethiols. Advanced Materials, 2017, 29, 1606760.	11.1	165
31	Optically switchable transistors by simple incorporation of photochromic systems into small-molecule semiconducting matrices. Nature Communications, 2015, 6, 6330.	5.8	162
32	Molecule–Graphene Hybrid Materials with Tunable Mechanoresponse: Highly Sensitive Pressure Sensors for Health Monitoring. Advanced Materials, 2019, 31, e1804600.	11.1	159
33	Epitaxial Composite Layers of Electron Donors and Acceptors from Very Large Polycyclic Aromatic Hydrocarbons. Journal of the American Chemical Society, 2002, 124, 9454-9457.	6.6	158
34	Blueprinting macromolecular electronics. Nature Chemistry, 2011, 3, 431-436.	6.6	158
35	Dynamers at the Solid–Liquid Interface: Controlling the Reversible Assembly/Reassembly Process between Two Highly Ordered Supramolecular Guanine Motifs. Angewandte Chemie - International Edition, 2010, 49, 1963-1966.	7.2	156
36	Supramolecular Approaches to Graphene: From Selfâ€Assembly to Moleculeâ€Assisted Liquidâ€Phase Exfoliation. Advanced Materials, 2016, 28, 6030-6051.	11.1	154

#	Article	IF	CITATIONS
37	Concentration-Dependent Supramolecular Engineering of Hydrogen-Bonded Nanostructures at Surfaces: Predicting Self-Assembly in 2D. Journal of the American Chemical Society, 2013, 135, 6942-6950.	6.6	153
38	Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. Nature Materials, 2016, 15, 1017-1022.	13.3	153
39	The Self-Assembly of Lipophilic Guanosine Derivatives in Solution and on Solid Surfaces. Chemistry - A European Journal, 2000, 6, 3242-3248.	1.7	151
40	Local Current Mapping and Patterning of Reduced Graphene Oxide. Journal of the American Chemical Society, 2010, 132, 14130-14136.	6.6	140
41	Optical Modulation of the Charge Injection in an Organic Fieldâ€Effect Transistor Based on Photochromic Selfâ€Assembledâ€Monolayerâ€Functionalized Electrodes. Advanced Materials, 2011, 23, 1447-1452.	11.1	140
42	Optically switchable organic light-emitting transistors. Nature Nanotechnology, 2019, 14, 347-353.	15.6	139
43	Selfâ€Assembly of a Donorâ€Acceptor Dyad Across Multiple Length Scales: Functional Architectures for Organic Electronics. Advanced Functional Materials, 2009, 19, 2486-2494.	7.8	138
44	Unraveling Unprecedented Charge Carrier Mobility through Structure Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2â€ <i>b</i>][1]benzothiophene. Advanced Materials, 2016, 28, 7106-7114.	11.1	138
45	Tailoring Bicomponent Supramolecular Nanoporous Networks: Phase Segregation, Polymorphism, and Glasses at the Solidâ^'Liquid Interface. Journal of the American Chemical Society, 2009, 131, 13062-13071.	6.6	134
46	Ultrafast Delamination of Graphite into Highâ€Quality Graphene Using Alternating Currents. Angewandte Chemie - International Edition, 2017, 56, 6669-6675.	7.2	134
47	Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Azaâ€Diels–Alder Reaction: Towards Highâ€Performance Supercapacitor Materials. Angewandte Chemie - International Edition, 2020, 59, 19602-19609.	7.2	133
48	Electrochemical Functionalization of Graphene at the Nanoscale with Self-Assembling Diazonium Salts. ACS Nano, 2016, 10, 7125-7134.	7.3	132
49	Charge transport in graphene–polythiophene blends as studied by Kelvin Probe Force Microscopy and transistor characterization. Journal of Materials Chemistry, 2011, 21, 2924.	6.7	127
50	Reversible, Fast, and Wideâ€Range Oxygen Sensor Based on Nanostructured Organometal Halide Perovskite. Advanced Materials, 2017, 29, 1702469.	11.1	127
51	Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy. Nature Chemistry, 2014, 6, 1017-1023.	6.6	124
52	Supramolecular Helices via Self-Assembly of 8-Oxoguanosines. Journal of the American Chemical Society, 2003, 125, 14741-14749.	6.6	123
53	Photovoltaic Charge Generation Visualized at the Nanoscale:Â A Proof of Principle. Journal of the American Chemical Society, 2008, 130, 780-781.	6.6	120
54	Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: effect of charge, dipole and molecular structure. Nanoscale, 2013, 5, 4205.	2.8	116

#	Article	IF	CITATIONS
55	Scanning probe microscopies beyond imaging. Journal of Materials Chemistry, 2004, 14, 1353-1366.	6.7	114
56	Self-Assembly of Electron Donorâ^'Acceptor Dyads into Ordered Architectures in Two and Three Dimensions: Surface Patterning and Columnar "Double Cables― Journal of the American Chemical Society, 2004, 126, 3567-3575.	6.6	111
57	The Self-Assembly of Lipophilic Guanosine Derivatives in Solution and on Solid Surfaces. Chemistry - A European Journal, 2000, 6, 3242-3248.	1.7	111
58	Molecular Tectonics on Surfaces: Bottom-Up Fabrication of 1D Coordination Networks That Form 1D and 2D Arrays on Graphite. Angewandte Chemie - International Edition, 2007, 46, 245-249.	7.2	110
59	Engineering of Supramolecular H-Bonded Nanopolygons via Self-Assembly of Programmed Molecular Modules. Journal of the American Chemical Society, 2009, 131, 509-520.	6.6	105
60	Chemical Conversion and Locking of the Imine Linkage: Enhancing the Functionality of Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 14236-14250.	7.2	105
61	High Shape Persistence in Single Polymer Chains Rigidified with Lateral Hydrogen Bonded Networks. Macromolecules, 2002, 35, 5290-5294.	2.2	104
62	Shape-Persistant Macrocycles with Terpyridine Units:Â Synthesis, Characterization, and Structure in the Crystal. Journal of the American Chemical Society, 2003, 125, 6907-6918.	6.6	102
63	Supramolecular Staircase via Self-Assembly of Disklike Molecules at the Solidâ^'Liquid Interface. Journal of the American Chemical Society, 2001, 123, 11462-11467.	6.6	101
64	Light-enhanced liquid-phase exfoliation and current photoswitching in graphene–azobenzene composites. Nature Communications, 2016, 7, 11090.	5.8	97
65	Tuning the Photoresponse in Organic Field-Effect Transistors. Journal of the American Chemical Society, 2012, 134, 2429-2433.	6.6	96
66	Extended triphenylenes: synthesis, mesomorphic properties and molecularly resolved scanning tunneling microscopy images of hexakis(dialkoxyphenyl)triphenylenes and dodeca(alkoxy)tris(triphenylenylene)s. Journal of Materials Chemistry, 2000, 10, 1519-1525.	6.7	94
67	Large Work Function Shift of Gold Induced by a Novel Perfluorinated Azobenzeneâ€Based Selfâ€Assembled Monolayer. Advanced Materials, 2013, 25, 432-436.	11.1	93
68	Harnessing the Liquidâ€Phase Exfoliation of Graphene Using Aliphatic Compounds: A Supramolecular Approach. Angewandte Chemie - International Edition, 2014, 53, 10355-10361.	7.2	92
69	Organic photodetectors based on supramolecular nanostructures. SmartMat, 2020, 1, .	6.4	91
70	Guanosineâ€based Hydrogenâ€bonded Scaffolds: Controlling the Assembly of Oligothiophenes. Advanced Materials, 2008, 20, 2433-2438.	11.1	90
71	Ordered Architectures of a Soluble Hexa-peri-hexabenzocoroneneâ^'Pyrene Dyad:  Thermotropic Bulk Properties and Nanoscale Phase Segregation at Surfaces. Journal of the American Chemical Society, 2003, 125, 9734-9739.	6.6	89
72	A Supramolecular Strategy to Leverage the Liquidâ€Phase Exfoliation of Graphene in the Presence of Surfactants: Unraveling the Role of the Length of Fatty Acids, Small, 2015, 11, 1691-1702	5.2	87

#	Article	IF	CITATIONS
73	Self-Assembly and Manipulation of Crown Ether Phthalocyanines at the Gel–Graphite Interface. Angewandte Chemie - International Edition, 2001, 40, 2348-2350.	7.2	85
74	The Relationship between Nanoscale Architecture and Function in Photovoltaic Multichromophoric Arrays as Visualized by Kelvin Probe Force Microscopy. Journal of the American Chemical Society, 2008, 130, 14605-14614.	6.6	85
75	Graphene nanoribbon blends with P3HT for organic electronics. Nanoscale, 2014, 6, 6301-6314.	2.8	85
76	Chemical sensing with Au and Ag nanoparticles. Chemical Society Reviews, 2021, 50, 1269-1304.	18.7	85
77	Graphene oxide-branched polyethylenimine foams for efficient removal of toxic cations from water. Journal of Materials Chemistry A, 2018, 6, 9384-9390.	5.2	84
78	Facile covalent functionalization of graphene oxide using microwaves: bottom-up development of functional graphitic materials. Journal of Materials Chemistry, 2010, 20, 9052.	6.7	82
79	Dynamic Materials through Metal-Directed and Solvent-Driven Self-Assembly of Cavitands. Angewandte Chemie - International Edition, 2003, 42, 1384-1387.	7.2	81
80	Non onventional Processing and Postâ€processing Methods for the Nanostructuring of Conjugated Materials for Organic Electronics. Advanced Functional Materials, 2011, 21, 1279-1295.	7.8	81
81	Exploring supramolecular interactions and architectures by scanning force microscopies. Chemical Society Reviews, 2005, 34, 551.	18.7	80
82	Multicomponent Monolayer Architectures at the Solid–Liquid Interface: Towards Controlled Space-Confined Properties and Reactivity of Functional Building Blocks. Small, 2007, 3, 190-194.	5.2	80
83	Enhancing the Liquid-Phase Exfoliation of Graphene in Organic Solvents upon Addition of n-Octylbenzene. Scientific Reports, 2015, 5, 16684.	1.6	79
84	Single Component Selfâ€Assembled Monolayers of Aromatic Azoâ€Biphenyl: Influence of the Packing Tightness on the SAM Structure and Lightâ€Induced Molecular Movements. Advanced Functional Materials, 2008, 18, 2972-2983.	7.8	78
85	Atomistic Simulations of 2D Bicomponent Self-Assembly: From Molecular Recognition to Self-Healing. Journal of the American Chemical Society, 2010, 132, 17880-17885.	6.6	76
86	Selfâ€Assembly of an Amphiphilic π onjugated Dyad into Fibers: Ultrafast and Ultrasensitive Humidity Sensor. Advanced Materials, 2015, 27, 3170-3174.	11.1	75
87	Hybrid Copperâ€Nanowire–Reducedâ€Grapheneâ€Oxide Coatings: A "Green Solution―Toward Highly Transparent, Highly Conductive, and Flexible Electrodes for (Opto)Electronics. Advanced Materials, 2017, 29, 1703225.	11.1	74
88	Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. Nature Nanotechnology, 2021, 16, 592-598.	15.6	74
89	Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes. Journal of Physical Chemistry Letters, 2016, 7, 2714-2721.	2.1	73
90	Highâ€Performance Grapheneâ€Based Cementitious Composites. Advanced Science, 2019, 6, 1801195.	5.6	73

#	Article	IF	CITATIONS
91	A nanomesh scaffold for supramolecular nanowire optoelectronic devices. Nature Nanotechnology, 2016, 11, 900-906.	15.6	72
92	Production and Patterning of Liquid Phase–Exfoliated 2D Sheets for Applications in Optoelectronics. Advanced Functional Materials, 2019, 29, 1901126.	7.8	71
93	Nitrogen-Doped Carbon Dots/TiO ₂ Nanoparticle Composites for Photoelectrochemical Water Oxidation. ACS Applied Nano Materials, 2020, 3, 3371-3381.	2.4	71
94	Electronic Transport Properties of Ensembles of Peryleneâ€Substituted Polyâ€isocyanopeptide Arrays. Advanced Functional Materials, 2008, 18, 3947-3955.	7.8	70
95	Photoswitching Vertically Oriented Azobenzene Selfâ€Assembled Monolayers at the Solid–Liquid Interface. Chemistry - A European Journal, 2010, 16, 14256-14260.	1.7	70
96	Optically switchable organic field-effect transistors based on photoresponsive gold nanoparticles blended with poly(3-hexylthiophene). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12375-12380.	3.3	70
97	Pre-programmed bicomponent porous networks at the solid–liquid interface: the low concentration regime. Chemical Communications, 2008, , 5289.	2.2	69
98	Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene. Nature Communications, 2017, 8, 14767.	5.8	68
99	Direct Photolithography on Molecular Crystals for High Performance Organic Optoelectronic Devices. Journal of the American Chemical Society, 2018, 140, 6984-6990.	6.6	68
100	STM Insight into Hydrogenâ€Bonded Bicomponent 1 D Supramolecular Polymers with Controlled Geometries at the Liquid–Solid Interface. Angewandte Chemie - International Edition, 2009, 48, 2039-2043.	7.2	67
101	"Helterâ€Skelterâ€Like―Perylene Polyisocyanopeptides. Chemistry - A European Journal, 2009, 15, 2536-254	71.7	64
102	Solvent vapour annealing of organic thin films: controlling the self-assembly of functional systems across multiple length scales. Journal of Materials Chemistry, 2010, 20, 2493.	6.7	63
103	Tipâ~'Sample Interactions in Kelvin Probe Force Microscopy: Quantitative Measurement of the Local Surface Potential. Journal of Physical Chemistry C, 2008, 112, 17368-17377.	1.5	62
104	Modulating the charge injection in organic field-effect transistors: fluorinated oligophenyl self-assembled monolayers for high work function electrodes. Journal of Materials Chemistry C, 2015, 3, 3007-3015.	2.7	62
105	Graphene Oxide Hybrid with Sulfur–Nitrogen Polymer for High-Performance Pseudocapacitors. Journal of the American Chemical Society, 2019, 141, 482-487.	6.6	61
106	Light-responsive reversible solvation and precipitation of gold nanoparticles. Chemical Communications, 2010, 46, 1147-1149.	2.2	60
107	Atomâ€Thick Membranes for Water Purification and Blue Energy Harvesting. Advanced Functional Materials, 2020, 30, 1902394.	7.8	58
108	Synthesis and Solid State Structures of Functionalized Phenyleneethynylene Trimers in 2D and 3D. Chemistry of Materials, 2003, 15, 1032-1039.	3.2	57

#	Article	IF	CITATIONS
109	Lightâ€Modulation of the Charge Injection in a Polymer Thinâ€Film Transistor by Functionalizing the Electrodes with Bistable Photochromic Selfâ€Assembled Monolayers. Advanced Materials, 2016, 28, 6606-6611.	11.1	57
110	Two-Dimensional Violet Phosphorus: A p-Type Semiconductor for (Opto)electronics. Journal of the American Chemical Society, 2022, 144, 3660-3666.	6.6	56
111	Graphene Transistors via in Situ Voltage-Induced Reduction of Graphene-Oxide under Ambient Conditions. Journal of the American Chemical Society, 2011, 133, 14320-14326.	6.6	55
112	Photoelectrochemical response of carbon dots (CDs) derived from chitosan and their use in electrochemical imaging. Materials Horizons, 2018, 5, 423-428.	6.4	55
113	Self-assembly of discotic molecules into mesoscopic crystals by solvent-vapour annealing. Soft Matter, 2008, 4, 2064.	1.2	54
114	Small Size, Big Impact: Recent Progress in Bottomâ€Up Synthesized Nanographenes for Optoelectronic and Energy Applications. Advanced Science, 2022, 9, e2106055.	5.6	54
115	Self-Assembly of an Alkylated Guanosine Derivative into Ordered Supramolecular Nanoribbons in Solution and on Solid Surfaces. Chemistry - A European Journal, 2007, 13, 3757-3764.	1.7	53
116	Modulating Largeâ€Area Selfâ€Assembly at the Solid–Liquid Interface by pHâ€Mediated Conformational Switching. Chemistry - A European Journal, 2009, 15, 4788-4792.	1.7	53
117	Supramolecular assembly/reassembly processes: molecular motors and dynamers operating at surfaces. Nanoscale, 2011, 3, 1397.	2.8	53
118	Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics. Nature Communications, 2018, 9, 2661.	5.8	53
119	The Relationship between Nanoscale Architecture and Charge Transport in Conjugated Nanocrystals Bridged by Multichromophoric Polymers. Journal of the American Chemical Society, 2009, 131, 7055-7063.	6.6	52
120	Doping of Monolayer Transition-Metal Dichalcogenides via Physisorption of Aromatic Solvent Molecules. Journal of Physical Chemistry Letters, 2019, 10, 540-547.	2.1	52
121	Multiresponsive Nonvolatile Memories Based on Optically Switchable Ferroelectric Organic Fieldâ€Effect Transistors. Advanced Materials, 2021, 33, e2007965.	11.1	52
122	Temperatureâ€Enhanced Solvent Vapor Annealing of a <i>C</i> ₃ Symmetric Hexaâ€ <i>peri</i> â€Hexabenzocoronene: Controlling the Selfâ€Assembly from Nano―to Macroscale. Small, 2009, 5, 112-119.	5.2	51
123	Modifying the Size of Ultrasound-Induced Liquid-Phase Exfoliated Graphene: From Nanosheets to Nanodots. ACS Nano, 2016, 10, 10768-10777.	7.3	51
124	A Universal Approach toward Light-Responsive Two-Dimensional Electronics: Chemically Tailored Hybrid van der Waals Heterostructures. ACS Nano, 2019, 13, 4814-4825.	7.3	51
125	SFM Characterization of Poly(isocyanodipeptide) Single Polymer Chains in Controlled Environments:Â Effect of Tip Adhesion and Chain Swelling. Macromolecules, 2005, 38, 473-480.	2.2	49
126	Electronic characterization of supramolecular materials at the nanoscale by Conductive Atomic Force and Kelvin Probe Force microscopies. Materials Today, 2014, 17, 504-517.	8.3	49

#	Article	IF	CITATIONS
127	Surfaceâ€Induced Selection During Inâ€Situ Photoswitching at the Solid/Liquid Interface. Angewandte Chemie - International Edition, 2015, 54, 4865-4869.	7.2	48
128	Selfâ€assembly of Natural and Unnatural Nucleobases at Surfaces and Interfaces. Small, 2016, 12, 83-95.	5.2	48
129	Photoinduced structural modifications in multicomponent architectures containing azobenzene moieties as photoswitchable cores. Journal of Materials Chemistry, 2009, 19, 4715.	6.7	47
130	Highly Sensitive Strain Sensors Based on Molecules–Gold Nanoparticles Networks for Highâ€Resolution Human Pulse Analysis. Small, 2021, 17, e2007593.	5.2	47
131	Self-templating 2D supramolecular networks: a new avenue to reach control over a bilayer formation. Nanoscale, 2011, 3, 4125.	2.8	46
132	Elucidating the nanoscale origins of organic electronic function by conductive atomic force microscopy. Journal of Materials Chemistry C, 2014, 2, 3118-3128.	2.7	46
133	Chemical Approaches to 2D Materials. Advanced Materials, 2016, 28, 6027-6029.	11.1	46
134	Molecular Approach to Engineer Two-Dimensional Devices for CMOS and beyond-CMOS Applications. Chemical Reviews, 2022, 122, 50-131.	23.0	46
135	Pyrazolino[60]fullerene-Oligophenylenevinylene Dumbbell-Shaped Arrays: Synthesis, Electrochemistry, Photophysics, and Self-Assembly on Surfaces. Chemistry - A European Journal, 2005, 11, 4405-4415.	1.7	45
136	Reversible Interconversion between a Supramolecular Polymer and a Discrete Octameric Species from a Guanosine Derivative by Dynamic Cation Binding and Release. Organic Letters, 2006, 8, 3125-3128.	2.4	45
137	Graphene/Polymer Nanocomposites for Supercapacitors. ChemNanoMat, 2017, 3, 362-372.	1.5	44
138	Functionalization of 2D Materials with Photosensitive Molecules: From Lightâ€Responsive Hybrid Systems to Multifunctional Devices. Advanced Optical Materials, 2019, 7, 1900286.	3.6	44
139	Functional polymers: scanning force microscopy insights. Physical Chemistry Chemical Physics, 2006, 8, 3927-3938.	1.3	43
140	Ultrathin π-Conjugated Polymer Films for Simple Fabrication of Large-Area Molecular Junctions. ChemPhysChem, 2007, 8, 515-518.	1.0	43
141	A New Class of Rigid Multi(azobenzene) Switches Featuring Electronic Decoupling: Unravelling the Isomerization in Individual Photochromes. Journal of the American Chemical Society, 2019, 141, 9273-9283.	6.6	43
142	Grapheneâ€Based Cementitious Composites: Toward Nextâ€Generation Construction Technologies. Advanced Functional Materials, 2021, 31, 2101887.	7.8	43
143	Nanoribbons from conjugated macromolecules on amorphous substrates observed by SFM and TEM. Nanotechnology, 1999, 10, 77-80.	1.3	42
144	Exploring nanoscale electrical and electronic properties of organic and polymeric functional materials by atomic force microscopy based approaches. Chemical Communications, 2007, , 3326.	2.2	42

#	Article	IF	CITATIONS
145	Molecular Tectonics at the Solid/Liquid Interface: Controlling the Nanoscale Geometry, Directionality, and Packing of 1D Coordination Networks on Graphite Surfaces. Advanced Materials, 2009, 21, 1131-1136.	11.1	42
146	Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes. Nanoscale, 2015, 7, 15873-15879.	2.8	42
147	Unconventional Nanofabrication for Supramolecular Electronics. Advanced Materials, 2019, 31, e1900599.	11.1	42
148	Self-organized nanofibers from a giant nanographene: effect of solvent and deposition method. Journal of Materials Chemistry, 2006, 16, 266-271.	6.7	41
149	Molecular tectonics based nanopatterning of interfaces with 2D metal–organic frameworks (MOFs). Chemical Communications, 2014, 50, 12250-12253.	2.2	40
150	Photoresponse of supramolecular self-assembled networks on graphene–diamond interfaces. Nature Communications, 2016, 7, 10700.	5.8	40
151	Thermal insulation with 2D materials: liquid phase exfoliated vermiculite functional nanosheets. Nanoscale, 2018, 10, 23182-23190.	2.8	40
152	MoS2 nanosheets via electrochemical lithium-ion intercalation under ambient conditions. FlatChem, 2018, 9, 33-39.	2.8	40
153	Supramolecular Crystal Engineering at the Solid–Liquid Interface from First Principles: Toward Unraveling the Thermodynamics of 2D Selfâ€Assembly. Advanced Materials, 2009, 21, 1383-1386.	11.1	39
154	Macromolecular Scaffolding: The Relationship Between Nanoscale Architecture and Function in Multichromophoric Arrays for Organic Electronics. Advanced Materials, 2010, 22, E81-8.	11.1	39
155	Guanosine-based hydrogen-bonded 2D scaffolds: metal-free formation of G-quartet and G-ribbon architectures at the solid/liquid interface. Chemical Communications, 2015, 51, 11677-11680.	2.2	38
156	Electronic Decoupling in C ₃ -Symmetrical Light-Responsive Tris(Azobenzene) Scaffolds: Self-Assembly and Multiphotochromism. Journal of the American Chemical Society, 2018, 140, 16062-16070.	6.6	37
157	Liquidâ€Gated Transistors Based on Reduced Graphene Oxide for Flexible and Wearable Electronics. Advanced Functional Materials, 2019, 29, 1905375.	7.8	37
158	Engineering Optically Switchable Transistors with Improved Performance by Controlling Interactions of Diarylethenes in Polymer Matrices. Journal of the American Chemical Society, 2020, 142, 11050-11059.	6.6	37
159	Molecular Approach to Electrochemically Switchable Monolayer MoS ₂ Transistors. Advanced Materials, 2020, 32, e2000740.	11.1	37
160	Influence of Molecular Order on the Local Work Function of Nanographene Architectures: A Kelvin-Probe Force Microscopy Study. ChemPhysChem, 2005, 6, 2371-2375.	1.0	36
161	Charge transport in fibre-based perylene-diimide transistors: effect of the alkyl substitution and processing technique. Nanoscale, 2012, 4, 2387.	2.8	36
162	Nanoscale Electrical Investigation of Layerâ€by‣ayer Grown Molecular Wires. Advanced Materials, 2014, 26, 1688-1693.	11.1	36

#	Article	IF	CITATIONS
163	Imineâ€Based Architectures at Surfaces and Interfaces: From Selfâ€Assembly to Dynamic Covalent Chemistry in 2D. Chemistry - an Asian Journal, 2018, 13, 465-481.	1.7	36
164	Graphene oxide-mesoporous SiO2 hybrid composite for fast and efficient removal of organic cationic contaminants. Carbon, 2020, 158, 193-201.	5.4	36
165	Controlled functionalization of carbon nanodots for targeted intracellular production of reactive oxygen species. Nanoscale Horizons, 2020, 5, 1240-1249.	4.1	36
166	The Influence of Thermal Annealing on the Morphology of Sexithienyl Thin Films. Advanced Materials, 1998, 10, 57-60.	11.1	34
167	Supramolecular architectures. Materials Today, 2004, 7, 24-32.	8.3	34
168	Boosting and Balancing Electron and Hole Mobility in Single- and Bilayer WSe ₂ Devices <i>via</i> Tailored Molecular Functionalization. ACS Nano, 2019, 13, 11613-11622.	7.3	34
169	Novel Keplerate type polyoxometalate-surfactant-graphene hybrids as advanced electrode materials for supercapacitors. Energy Storage Materials, 2019, 17, 186-193.	9.5	34
170	Graphene: A Disruptive Opportunity for COVIDâ€19 and Future Pandemics?. Advanced Materials, 2021, 33, e2007847.	11.1	34
171	High-Performance Phototransistors Based on PDIF-CN ₂ Solution-Processed Single Fiber and Multifiber Assembly. ACS Applied Materials & Interfaces, 2016, 8, 9829-9838.	4.0	33
172	Design, synthesis, chemical stability, packing, cyclic voltammetry, ionisation potential, and charge transport of [1]benzothieno[3,2-b][1]benzothiophene derivatives. Journal of Materials Chemistry C, 2016, 4, 4863-4879.	2.7	33
173	Atomically Precise Prediction of 2D Selfâ€Assembly of Weakly Bonded Nanostructures: STM Insight into Concentrationâ€Dependent Architectures. Small, 2016, 12, 343-350.	5.2	33
174	Water-Dispersed High-Quality Graphene: A Green Solution for Efficient Energy Storage Applications. ACS Nano, 2019, 13, 9431-9441.	7.3	33
175	Harnessing Selectivity and Sensitivity in Electronic Biosensing: A Novel Lab-on-Chip Multigate Organic Transistor. Analytical Chemistry, 2020, 92, 9330-9337.	3.2	33
176	Quantitative Analysis of Scanning Tunneling Microscopy Images of Mixed-Ligand-Functionalized Nanoparticles. Langmuir, 2013, 29, 13723-13734.	1.6	32
177	Photoswitching Azobenzene Derivatives in Single Molecule Junctions: A Theoretical Insight into the <i>I</i> / <i>V</i> Characteristics. Journal of Physical Chemistry C, 2014, 118, 18721-18729.	1.5	32
178	Nanopatterning of Surfaces with Monometallic and Heterobimetallic 1D Coordination Polymers: A Molecular Tectonics Approach at the Solid/Liquid Interface. Journal of the American Chemical Society, 2015, 137, 8450-8459.	6.6	32
179	Supramolecular Self-Assembly in a Sub-micrometer Electrodic Cavity: Fabrication of Heat-Reversible ï€-Gel Memristor. Journal of the American Chemical Society, 2017, 139, 14406-14411.	6.6	32
180	Self‣uspended Nanomesh Scaffold for Ultrafast Flexible Photodetectors Based on Organic Semiconducting Crystals. Advanced Materials, 2018, 30, e1801181.	11.1	32

#	Article	IF	CITATIONS
181	Light-induced reversible modification of the work function of a new perfluorinated biphenyl azobenzene chemisorbed on Au (111). Nanoscale, 2014, 6, 8969-8977.	2.8	31
182	A Multifunctional Polymer-Graphene Thin-Film Transistor with Tunable Transport Regimes. ACS Nano, 2015, 9, 2357-2367.	7.3	31
183	Grapheneâ€Based Hybrid Functional Materials. Small, 2021, 17, e2100514.	5.2	31
184	Multiscale Charge Injection and Transport Properties in Selfâ€Assembled Monolayers of Biphenyl Thiols with Varying Torsion Angles. Chemistry - A European Journal, 2012, 18, 10335-10347.	1.7	30
185	Modulating the Charge Transport in 2D Semiconductors via Energy‣evel Phototuning. Advanced Materials, 2019, 31, 1903402.	11.1	30
186	Covalently linked donor–acceptor dyad for efficient single material organic solar cells. Chemical Communications, 2019, 55, 14202-14205.	2.2	30
187	Comparative Effects of Graphene and Molybdenum Disulfide on Human Macrophage Toxicity. Small, 2020, 16, e2002194.	5.2	30
188	Molecular Donor–Acceptor Dyads for Efficient Singleâ€Material Organic Solar Cells. Solar Rrl, 2021, 5, 2000653.	3.1	30
189	Supramolecular engineering of charge transfer in wide bandgap organic semiconductors with enhanced visible-to-NIR photoresponse. Nature Communications, 2021, 12, 3667.	5.8	30
190	Quantum Capacitance through Molecular Infiltration of 7,7,8,8-Tetracyanoquinodimethane in Metal–Organic Framework/Covalent Organic Framework Hybrids. ACS Nano, 2021, 15, 18580-18589.	7.3	30
191	A Conjugated Thiopheneâ€Based Rotaxane: Synthesis, Spectroscopy, and Modeling. Chemistry - A European Journal, 2010, 16, 3933-3941.	1.7	29
192	Conformationally pre-organized and pH-responsive flat dendrons: synthesis and self-assembly at the liquid–solid interface. Nanoscale, 2012, 4, 467-472.	2.8	29
193	Enhanced mobility in P3HT-based OTFTs upon blending with a phenylene–thiophene–thiophene–phenylene small molecule. Chemical Communications, 2012, 48, 1562-1564.	2.2	29
194	Charge Transport Over Multiple Length Scales in Supramolecular Fiber Transistors: Single Fiber Versus Ensemble Performance. Advanced Materials, 2014, 26, 430-435.	11.1	29
195	Simultaneous Optical Tuning of Hole and Electron Transport in Ambipolar WSe ₂ Interfaced with a Bicomponent Photochromic Layer: From Highâ€Mobility Transistors to Flexible Multilevel Memories. Advanced Materials, 2020, 32, e1907903.	11.1	29
196	Phase separation and affinity between a fluorinated perylene diimide dye and an alkyl-substituted hexa-peri-hexabenzocoronene. Journal of Materials Chemistry, 2010, 20, 71-82.	6.7	28
197	Morphology and Electronic Properties of Electrochemically Exfoliated Graphene. Journal of Physical Chemistry Letters, 2017, 8, 3347-3355.	2.1	28
198	Ultrafast and Highly Sensitive Chemically Functionalized Graphene Oxide-Based Humidity Sensors: Harnessing Device Performances via the Supramolecular Approach. ACS Applied Materials & Interfaces, 2020, 12, 44017-44025.	4.0	28

#	Article	IF	CITATIONS
199	Selfâ€Assembly of Alkoxyâ€Substituted Bis(hydrazone)â€Based Organic Ligands and of a Metallosupramolecular Grid on Graphite. ChemPhysChem, 2009, 10, 699-705.	1.0	27
200	Bottomâ€Up Fabricated Asymmetric Electrodes for Organic Electronics. Advanced Materials, 2010, 22, 5018-5023.	11.1	27
201	Synthesis, Characterization, and Surface Initiated Polymerization of Carbazole Functionalized Isocyanides. Chemistry of Materials, 2010, 22, 2597-2607.	3.2	27
202	Tuning the charge injection of P3HT-based organic thin-film transistors through electrode functionalization with oligophenylene SAMs. Journal of Materials Chemistry, 2010, 20, 10798.	6.7	27
203	Leveraging the Ambipolar Transport in Polymeric Fieldâ€Effect Transistors via Blending with Liquidâ€Phase Exfoliated Graphene. Advanced Materials, 2014, 26, 4814-4819.	11.1	27
204	Enhancing the Charge Transport in Solutionâ€Processed Perylene Diâ€imide Transistors via Thermal Annealing of Metastable Disordered Films. Advanced Functional Materials, 2014, 24, 5503-5510.	7.8	27
205	Phototuning Selectively Hole and Electron Transport in Optically Switchable Ambipolar Transistors. Advanced Functional Materials, 2020, 30, 1908944.	7.8	27
206	Molecular Springs: Integration of Complex Dynamic Architectures into Functional Devices. Angewandte Chemie - International Edition, 2020, 59, 7319-7330.	7.2	27
207	Collective Dipoleâ€Dominated Doping of Monolayer MoS ₂ : Orientation and Magnitude Control via the Supramolecular Approach. Advanced Functional Materials, 2020, 30, 2002846.	7.8	27
208	Selective Formation of Bi omponent Arrays Through Hâ€Bonding of Multivalent Molecular Modules. Advanced Functional Materials, 2009, 19, 1207-1214.	7.8	26
209	Nanopatterning the surface with ordered supramolecular architectures of N9-alkylated guanines: STM reveals. Chemical Communications, 2010, 46, 4493.	2.2	26
210	Modulating the self-assembly of rigid "clicked―dendrimers at the solid–liquid interface by tuning non-covalent interactions between side groups. Chemical Communications, 2011, 47, 10578.	2.2	26
211	2D MXene–Molecular Hybrid Additive for Highâ€Performance Ambipolar Polymer Fieldâ€Effect Transistors and Logic Gates. Advanced Materials, 2021, 33, e2008215.	11.1	26
212	Scanning Probe Microscopy Investigation of Self-Organized Perylenetetracarboxdiimide Nanostructures at Surfaces: Structural and Electronic Properties. Small, 2007, 3, 161-167.	5.2	25
213	The Relationship between Structural and Electrical Characteristics in Perylenecarboxydiimideâ€Based Nanoarchitectures. Advanced Functional Materials, 2015, 25, 2501-2510.	7.8	25
214	Modular Graphene-Based 3D Covalent Networks: Functional Architectures for Energy Applications. Small, 2016, 12, 1044-1052.	5.2	25
215	Optical Input/Electrical Output Memory Elements based on a Liquid Crystalline Azobenzene Polymer. ACS Applied Materials & Interfaces, 2016, 8, 6563-6569.	4.0	25
216	Janus 2D materials <i>via</i> asymmetric molecular functionalization. Chemical Science, 2022, 13, 315-328.	3.7	25

#	Article	IF	CITATIONS
217	Defect Engineering Strategies Toward Controlled Functionalization of Solutionâ€Processed Transition Metal Dichalcogenides. Small Science, 2022, 2, .	5.8	25
218	Competitive Physisorption Among Alkyl‣ubstituted <i>ï€</i> â€Conjugated Oligomers at the Solid–Liquid Interface: Towards Prediction of Selfâ€Assembly at Surfaces from a Multicomponent Solution. Small, 2009, 5, 1521-1526.	5.2	24
219	Selfâ€Assembled Conjugated Thiopheneâ€Based Rotaxane Architectures: Structural, Computational, and Spectroscopic Insights into Molecular Aggregation. Advanced Functional Materials, 2011, 21, 834-844.	7.8	24
220	Perchlorination of Coronene Enhances its Propensity for Selfâ€Assembly on Graphene. ChemPhysChem, 2016, 17, 352-357.	1.0	24
221	Punctured Two-Dimensional Sheets for Harvesting Blue Energy. ACS Nano, 2017, 11, 10654-10658.	7.3	24
222	Analysis of External and Internal Disorder to Understand Bandâ€Like Transport in nâ€Type Organic Semiconductors. Advanced Materials, 2021, 33, 2007870.	11.1	24
223	Controlling the morphology of conductive PEDOT by in situ electropolymerization: from thin films to nanowires with variable electrical properties. Nanoscale, 2013, 5, 7756.	2.8	23
224	Universal Fabrication of Highly Efficient Plasmonic Thinâ€Films for Labelâ€Free SERS Detection. Small, 2021, 17, e2100755.	5.2	23
225	Synaptic Plasticity Powering Longâ€Afterglow Organic Lightâ€Emitting Transistors. Advanced Materials, 2021, 33, e2103369.	11.1	23
226	Subnanometerâ€Resolved Patterning of Bicomponent Selfâ€Assembled Monolayers on Au(111). Angewandte Chemie - International Edition, 2008, 47, 2484-2488.	7.2	22
227	Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters. Journal of Materials Chemistry C, 2016, 4, 4259-4268.	2.7	22
228	Tailoring the physicochemical properties of solution-processed transition metal dichalcogenides <i>via</i> molecular approaches. Chemical Communications, 2019, 55, 8900-8914.	2.2	22
229	Molecular Functionalization of Chemically Active Defects in WSe 2 for Enhanced Optoâ€Electronics. Advanced Functional Materials, 2020, 30, 2005045.	7.8	22
230	Chemical Conversion and Locking of the Imine Linkage: Enhancing the Functionality of Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 14356-14370.	1.6	22
231	Growth of Ordered Hexakis-dodecyl-hexabenzocoronene Layers from Solution:  A SFM and ARUPS Study. Journal of Physical Chemistry B, 2001, 105, 11114-11119.	1.2	21
232	Self-assembly of hydrogen-bond assisted supramolecular azatriphenylene architectures. Soft Matter, 2008, 4, 303-310.	1.2	21
233	Exploring Electronic Transport in Molecular Junctions by Conducting Atomic Force Microscopy. Topics in Current Chemistry, 2008, 285, 157-202.	4.0	21
234	Rigid Dimers Formed through Strong Interdigitated Hâ€Bonds Yield Compact 1D Supramolecular Helical Polymers. Small, 2011, 7, 342-350.	5.2	21

#	Article	IF	CITATIONS
235	Fastâ€Response Photonic Device Based on Organicâ€Crystal Heterojunctions Assembled into a Verticalâ€Yetâ€Open Asymmetric Architecture. Advanced Materials, 2017, 29, 1605760.	11.1	21
236	Modular Preparation of Grapheneâ€Based Functional Architectures through Twoâ€Step Organic Reactions: Towards Highâ€Performance Energy Storage. Chemistry - A European Journal, 2018, 24, 18518-18528.	1.7	21
237	Tuning the Optical and Electrical Properties of Fewâ€Layer Black Phosphorus via Physisorption of Small Solvent Molecules. Small, 2019, 15, e1903432.	5.2	21
238	Crystalline C60monolayers at the solid–organic solution interface. Journal of Materials Chemistry, 2002, 12, 3366-3367.	6.7	20
239	All-thiophene donor–acceptor blends: photophysics, morphology and photoresponse. Journal of Materials Chemistry, 2005, 15, 895-901.	6.7	20
240	Local Surface Potential of π onjugated Nanostructures by Kelvin Probe Force Microscopy: Effect of the Sampling Depth. Small, 2011, 7, 634-639.	5.2	20
241	Ambipolar organic field-effect transistors with balanced mobilities through solvent–vapour annealing induced phase-separation of bi-component mixtures. Journal of Materials Chemistry, 2012, 22, 9509.	6.7	20
242	Photoisomerisation and light-induced morphological switching of a polyoxometalate–azobenzene hybrid. Chemical Communications, 2017, 53, 7278-7281.	2.2	20
243	The Role of Morphology in Optically Switchable Transistors Based on a Photochromic Molecule/pâ€₹ype Polymer Semiconductor Blend. Advanced Functional Materials, 2020, 30, 1907507.	7.8	20
244	Graphene transistors for real-time monitoring molecular self-assembly dynamics. Nature Communications, 2020, 11, 4731.	5.8	20
245	Photomodulation of Charge Transport in All‣emiconducting 2D–1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect. Advanced Materials, 2020, 32, e2001268.	11.1	20
246	Alignment of Extremely Long Single Polymer Chains by Exploiting Hydrodynamic Flow. ChemPhysChem, 2004, 5, 128-130.	1.0	19
247	Correlating electrical properties and molecular structure of SAMs organized between two metal surfaces. Synthetic Metals, 2004, 147, 11-18.	2.1	19
248	Molecular design driving tetraporphyrin self-assembly on graphite: a joint STM, electrochemical and computational study. Nanoscale, 2016, 8, 13678-13686.	2.8	19
249	Solution-Processed Graphene–Nanographene van der Waals Heterostructures for Photodetectors with Efficient and Ultralong Charge Separation. Journal of the American Chemical Society, 2021, 143, 17109-17116.	6.6	19
250	Boosting the electronic and catalytic properties of 2D semiconductors with supramolecular 2D hydrogen-bonded superlattices. Nature Communications, 2022, 13, 510.	5.8	19
251	Dynamic Materials through Metal-Directed and Solvent-Driven Self-Assembly of Cavitands. Angewandte Chemie, 2003, 115, 1422-1425.	1.6	18
252	Lightâ€Induced Contraction/Expansion of 1D Photoswitchable Metallopolymer Monitored at the Solid–Liquid Interface. Small, 2017, 13, 1701790.	5.2	18

#	Article	IF	CITATIONS
253	Exfoliation of Few‣ayer Graphene in Volatile Solvents Using Aromatic Perylene Diimide Derivatives as Surfactants. ChemPlusChem, 2017, 82, 358-367.	1.3	18
254	Photomodulation of Two-Dimensional Self-Assembly of Azobenzene–Hexa- <i>peri</i> -hexabenzocoronene–Azobenzene Triads. Chemistry of Materials, 2019, 31, 6979-6985.	3.2	18
255	Harnessing selectivity in chemical sensing <i>via</i> supramolecular interactions: from functionalization of nanomaterials to device applications. Materials Horizons, 2021, 8, 2685-2708.	6.4	18
256	Light-Programmable Logic-in-Memory in 2D Semiconductors Enabled by Supramolecular Functionalization: Photoresponsive Collective Effect of Aligned Molecular Dipoles. ACS Nano, 2021, 15, 13732-13741.	7.3	18
257	Photoconductive and supramolecularly engineered organic field-effect transistors based on fibres from donor–acceptor dyads. Nanoscale, 2012, 4, 1677.	2.8	17
258	Supramolecular H-bonded porous networks at surfaces: exploiting primary and secondary interactions in a bi-component melamine–xanthine system. Physical Chemistry Chemical Physics, 2013, 15, 12442.	1.3	17
259	Au nanoparticle scaffolds modulating intermolecular interactions among the conjugated azobenzenes chemisorbed on curved surfaces: tuning the kinetics of <i>cis</i> – <i>trans</i> isomerisation. Nanoscale, 2015, 7, 13836-13839.	2.8	17
260	Direct Patterning of Organic Functional Polymers through Conventional Photolithography and Noninvasive Crossâ€Link Agents. Advanced Materials, 2016, 28, 5249-5254.	11.1	17
261	3D hybrid networks of gold nanoparticles: mechanoresponsive electrical humidity sensors with on-demand performances. Nanoscale, 2019, 11, 19319-19326.	2.8	17
262	Controlling Ambipolar Transport and Voltage Inversion in Solution-Processed Thin-Film Devices through Polymer Blending. Chemistry of Materials, 2019, 31, 6491-6498.	3.2	17
263	Multiscale Charge Transport in van der Waals Thin Films: Reduced Graphene Oxide as a Case Study. ACS Nano, 2021, 15, 2654-2667.	7.3	17
264	Molecular Doping of 2D Indium Selenide for Ultrahigh Performance and Lowâ€Power Consumption Broadband Photodetectors. Advanced Functional Materials, 2021, 31, 2103353.	7.8	17
265	Asymmetric Chemical Functionalization of Topâ€Contact Electrodes: Tuning the Charge Injection for Highâ€Performance MoS ₂ Fieldâ€Effect Transistors and Schottky Diodes. Advanced Materials, 2022, 34, e2109445.	11.1	17
266	High-Performance Humidity Sensing in π-Conjugated Molecular Assemblies through the Engineering of Electron/Proton Transport and Device Interfaces. Journal of the American Chemical Society, 2022, 144, 2546-2555.	6.6	17
267	Ordered Monolayers of Nanographitic Sheets Processed from Solutions via Oxidative Cyclodehydrogenation. Langmuir, 2002, 18, 4183-4185.	1.6	16
268	Scanning force microscopy and optical spectroscopy of phase-segregated thin films of poly(9,9′-dioctylfluorene-alt-benzothiadiazole) and poly(ethylene oxide). Journal of Materials Chemistry, 2007, 17, 1387-1391.	6.7	16
269	Enhanced luminescence properties of highly threaded conjugated polyelectrolytes with potassium counter-ions upon blending with poly(ethylene oxide). Journal of Applied Physics, 2010, 107, 124509.	1.1	16
270	Graphene-Induced Enhancement of n-Type Mobility in Perylenediimide Thin Films. Journal of Physical Chemistry C, 2014, 118, 24819-24826.	1.5	16

#	Article	IF	CITATIONS
271	Waveguide and Plasmonic Absorption-Induced Transparency. ACS Nano, 2016, 10, 4570-4578.	7.3	16
272	Reduced graphene oxide–silsesquioxane hybrid as a novel supercapacitor electrode. Nanoscale, 2020, 12, 18733-18741.	2.8	16
273	High-sorption terpyridine–graphene oxide hybrid for the efficient removal of heavy metal ions from wastewater. Nanoscale, 2021, 13, 10490-10499.	2.8	16
274	Self-assembly and electrical properties of a novel heptameric thiophene–benzothiadiazole based architectures. Chemical Communications, 2012, 48, 12162.	2.2	15
275	Self-Assembly of N ³ -Substituted Xanthines in the Solid State and at the Solid–Liquid Interface. Langmuir, 2013, 29, 7283-7290.	1.6	15
276	2D hybrid networks of gold nanoparticles: mechanoresponsive optical humidity sensors. Nanoscale, 2019, 11, 19315-19318.	2.8	15
277	Ternaryâ€Responsive Fieldâ€Effect Transistors and Multilevel Memories Based on Asymmetrically Functionalized Janus Fewâ€Layer WSe ₂ . Advanced Functional Materials, 2021, 31, 2102721.	7.8	15
278	Influence of the solvent on the aggregation of a poly(3-hexylthiophene)–quinquethiophene-S,S-dioxide blend at surfaces: an SFM study. Journal of Materials Chemistry, 2005, 15, 1704.	6.7	14
279	H-Bonding Tuned Self-Assembly of Phenylene–Thiophene–Thiophene–Phenylene Derivatives at Surfaces: Structural and Electrical Studies. Journal of Physical Chemistry C, 2011, 115, 9753-9759.	1.5	14
280	High Mobility in Solutionâ€Processed 2,7â€Dialkylâ€[1]benzothieno[3,2â€ <i>b</i>][1]benzothiopheneâ€Based Fieldâ€Effect Transistors Prepared with a Simplified Deposition Method. ChemPlusChem, 2014, 79, 371-374.	1.3	14
281	Chemical Synthesis at Surfaces with Atomic Precision: Taming Complexity and Perfection. Angewandte Chemie - International Edition, 2019, 58, 18758-18775.	7.2	14
282	Nano-Subsidence-Assisted Precise Integration of Patterned Two-Dimensional Materials for High-Performance Photodetector Arrays. ACS Nano, 2019, 13, 2654-2662.	7.3	14
283	Effect of temperature and exfoliation time on the properties of chemically exfoliated MoS ₂ nanosheets. Chemical Communications, 2020, 56, 15573-15576.	2.2	14
284	Xâ€Rayâ€induced Growth Dynamics of Luminescent Silver Clusters in Zeolites. Small, 2020, 16, e2002063.	5.2	14
285	Oxidant-dependent antioxidant activity of polydopamine films: The chemistry-morphology interplay. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126134.	2.3	14
286	Asymmetric Dressing of WSe2 with (Macro)molecular Switches: Fabrication of Quaternary-Responsive Transistors. ACS Nano, 2021, 15, 10668-10677.	7.3	14
287	Solid–solid transfer of organic semiconductors for field-effect transistor fabrication. Journal of Materials Chemistry, 2010, 20, 9018.	6.7	13
288	Effect of the molecular weight of the polymer gate dielectric on the performances of solution-processed ambipolar OTFTs. Journal of Materials Chemistry C, 2013, 1, 7725.	2.7	13

#	Article	IF	CITATIONS
289	Self-organization of amino-acid-derived NDI assemblies into a nanofibrillar superstructure with humidity sensitive n-type semiconducting properties. Chemical Communications, 2017, 53, 9713-9716.	2.2	13
290	Graphene exfoliation in the presence of semiconducting polymers for improved film homogeneity and electrical performances. Carbon, 2018, 130, 495-502.	5.4	13
291	Tuning graphene transistors through <i>ad hoc</i> electrostatics induced by a nanometer-thick molecular underlayer. Nanoscale, 2019, 11, 19705-19712.	2.8	13
292	Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Azaâ€Diels–Alder Reaction: Towards Highâ€Performance Supercapacitor Materials. Angewandte Chemie, 2020, 132, 19770-19777.	1.6	13
293	Vertical organic transistors with short channels for multifunctional optoelectronic devices. Journal of Materials Chemistry C, 2022, 10, 2494-2506.	2.7	13
294	Untying the Bundles of Solution‣ynthesized Graphene Nanoribbons for Highly Capacitive Micro‣upercapacitors. Advanced Functional Materials, 2022, 32, 2109543.	7.8	13
295	Schiff base capped gold nanoparticles for transition metal cation sensing in organic media. Chemical Communications, 2022, 58, 5773-5776.	2.2	13
296	Self-assembly of π-conjugated discs on heterogeneous surfaces: effect of the micro- and nano-scale dewetting. Synthetic Metals, 2004, 147, 117-121.	2.1	12
297	Large-area bi-component processing of organic semiconductors by spray deposition and spin coating with orthogonal solvents. Applied Physics A: Materials Science and Processing, 2009, 95, 15-20.	1.1	12
298	Solution-Processed Field-Effect Transistors Based on Dihexylquaterthiophene Films with Performances Exceeding Those of Vacuum-Sublimed Films. ACS Applied Materials & Interfaces, 2014, 6, 21248-21255.	4.0	12
299	Two-dimensional soft supramolecular networks. Chemical Communications, 2015, 51, 17297-17300.	2.2	12
300	Phenoxyaluminum(salophen) Scaffolds: Synthesis, Electrochemical Properties, and Selfâ€Assembly at Surfaces of Multifunctional Systems. Chemistry - A European Journal, 2018, 24, 11954-11960.	1.7	12
301	Au(111) Surface Contamination in Ambient Conditions: Unravelling the Dynamics of the Work Function in Air. Advanced Materials Interfaces, 2021, 8, 2100068.	1.9	12
302	Nanopatterning the graphite surface with ordered macrocyclic or ribbon-like assemblies of isocytosine derivatives: an STM study. CrystEngComm, 2011, 13, 5535.	1.3	11
303	Exfoliation of graphene with an industrial dye: teaching an old dog new tricks. 2D Materials, 2014, 1, 035006.	2.0	11
304	Ultraschnelle SchichtablĶsung von Graphit zu qualitativ hochwertigem Graphen durch Nutzung von Wechselstrom. Angewandte Chemie, 2017, 129, 6770-6776.	1.6	11
305	Asymmetric Injection in Organic Transistors via Direct SAM Functionalization of Source and Drain Electrodes. ACS Omega, 2017, 2, 3502-3508.	1.6	11
306	Nanomaterials properties tuned by their environment: integrating supramolecular concepts into sensing devices. Chemical Society Reviews, 2018, 47, 4675-4676.	18.7	11

#	Article	IF	CITATIONS
307	Atomic Force Microscopy-Based Single-Molecule Force Spectroscopy of Synthetic Supramolecular Dimers and Polymers. , 2006, , 315-353.		10
308	Nanoscale Structural and Electronic Properties of Ultrathin Blends of Two Polyaromatic Molecules: A Kelvin Probe Force Microscopy Investigation. ChemPhysChem, 2006, 7, 847-853.	1.0	10
309	Influence of ï€â€"ï€ stacking on the self-assembly and coiling of multi-chromophoric polymers based on perylenebis(dicarboximides): an AFM study. Soft Matter, 2009, 5, 4680.	1.2	10
310	Selfâ€Assembly of Functionalized Oligothiophene into Hygroscopic Fibers: Fabrication of Highly Sensitive and Fast Humidity Sensors. Advanced Electronic Materials, 2018, 4, 1700382.	2.6	10
311	π onjugated Molecules: From Structure to Function. ChemPlusChem, 2019, 84, 1177-1178.	1.3	10
312	Tetrapodal Diazatriptycene Enforces Orthogonal Orientation in Self-Assembled Monolayers. ACS Applied Materials & Interfaces, 2020, 12, 6565-6572.	4.0	10
313	Molecular Springs: Integration of Complex Dynamic Architectures into Functional Devices. Angewandte Chemie, 2020, 132, 7387-7398.	1.6	10
314	Harnessing Selectivity and Sensitivity in Ion Sensing via Supramolecular Recognition: A 3D Hybrid Gold Nanoparticle Network Chemiresistor. Advanced Functional Materials, 2021, 31, 2008554.	7.8	10
315	A robust vertical nanoscaffold for recyclable, paintable, and flexible light-emitting devices. Science Advances, 2022, 8, eabn2225.	4.7	10
316	Selective Ion Sensing in Artificial Sweat Using Low ost Reduced Graphene Oxide Liquidâ€Gated Plastic Transistors. Small, 2022, 18, .	5.2	10
317	Tuning Intermolecular Interactions in a Rodlike Polymer Assembled at Surfaces and in Solution. Langmuir, 2004, 20, 8955-8957.	1.6	9
318	Concentration-dependent supramolecular patterns of C3 and C2 symmetric molecules at the solid/liquid interface. Colloids and Surfaces B: Biointerfaces, 2018, 168, 211-216.	2.5	9
319	Persian waxing of graphite: towards green large-scale production of graphene. Chemical Communications, 2019, 55, 5331-5334.	2.2	9
320	Electrochemically Exfoliated Graphene for High-Durability Cement Composites. ACS Applied Materials & Interfaces, 2021, 13, 23000-23010.	4.0	9
321	Field-effect-transistor-based ion sensors: ultrasensitive mercury(<scp>ii</scp>) detection <i>via</i> healing MoS ₂ defects. Nanoscale, 2021, 13, 19682-19689.	2.8	9
322	MoS ₂ Defect Healing for High-Performance Chemical Sensing of Polycyclic Aromatic Hydrocarbons. ACS Nano, 2022, 16, 11234-11243.	7.3	9
323	Chemical Tailoring of Functional Grapheneâ€Based Nanocomposites by Simple Stacking, Cutting, and Folding. Angewandte Chemie - International Edition, 2016, 55, 15472-15474.	7.2	8
324	Discrete polygonal supramolecular architectures of isocytosine-based Pt(<scp>ii</scp>) complexes at the solution/graphite interface. Chemical Communications, 2016, 52, 11163-11166.	2.2	8

#	Article	IF	CITATIONS
325	Influence of the supramolecular order on the electrical properties of 1D coordination polymers based materials. Nanoscale, 2016, 8, 2386-2394.	2.8	8
326	Charge transport enhancement in supramolecular oligothiophene assemblies using Pt(<scp>ii</scp>) centers as a guide. Journal of Materials Chemistry A, 2019, 7, 16777-16784.	5.2	8
327	Synthesis and characterization of ultralong copper sulfide nanowires and their electrical properties. Journal of Materials Chemistry C, 2021, 9, 12133-12140.	2.7	8
328	Non-invasive digital etching of van der Waals semiconductors. Nature Communications, 2022, 13, 1844.	5.8	8
329	STM Investigation of Alkylated Thiotriphenylene Monolayers at the Solid–Liquid Interface: Structure and Dynamics. Australian Journal of Chemistry, 2006, 59, 376.	0.5	7
330	A Quaterthiopheneâ€Based Rotaxane: Synthesis, Spectroscopy, and Selfâ€Assembly at Surfaces. Small, 2012, 8, 1835-1839.	5.2	7
331	Orthogonal self-assembly and selective solvent vapour annealing: simplified processing of a photovoltaic blend. Chemical Communications, 2013, 49, 4322.	2.2	7
332	Titanium Dioxide Mesoporous Electrodes for Solidâ€State Dyeâ€Sensitized Solar Cells: Crossâ€Analysis of the Critical Parameters. Advanced Energy Materials, 2014, 4, 1301362.	10.2	7
333	The dramatic effect of the annealing temperature and dielectric functionalization on the electron mobility of indene-C ₆₀ bis-adduct thin films. Chemical Communications, 2015, 51, 5414-5417.	2.2	7
334	Dynamic covalent conjugated polymer epitaxy on graphene. Journal of Materials Chemistry C, 2019, 7, 12240-12247.	2.7	7
335	Simultaneous non-covalent bi-functionalization of 1T-MoS ₂ ruled by electrostatic interactions: towards multi-responsive materials. Chemical Communications, 2020, 56, 6878-6881.	2.2	7
336	Introduction to †Chemistry of 2D materials: graphene and beyond'. Nanoscale, 2020, 12, 24309-24310.	2.8	7
337	Metal–biomolecule frameworks (BioMOFs): a novel approach for "green―optoelectronic applications. Chemical Communications, 2022, 58, 677-680.	2.2	7
338	Improving charge transport in poly(3â€hexylthiophene) transistors via blending with an alkylâ€substituted phenylene–thiophene–thiophene–phenylene molecule. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 642-649.	2.4	6
339	High, Anisotropic, and Substrate-Independent Mobility in Polymer Field-Effect Transistors Based on Preassembled Semiconducting Nanofibrils. ACS Nano, 2017, 11, 2000-2007.	7.3	6
340	Generation of Low-Dimensional Architectures through the Self-Assembly of Pyromellitic Diimide Derivatives. ACS Omega, 2017, 2, 1672-1678.	1.6	6
341	Fluorescence Commutation and Surface Photopatterning with Porphyrin Tetradithienylethene Switches. Chemistry - A European Journal, 2018, 24, 1631-1639.	1.7	6
342	Oxacycleâ€Fused [1]Benzothieno[3,2â€ <i>b</i>][1]benzothiophene Derivatives: Synthesis, Electronic Structure, Electrochemical Properties, Ionisation Potential, and Crystal Structure. ChemPlusChem, 2019, 84, 1263-1269.	1.3	6

#	Article	IF	CITATIONS
343	Dinaphthotetrathienoacenes: Synthesis, Characterization, and Applications in Organic Fieldâ€Effect Transistors. Advanced Science, 2022, 9, e2105674.	5.6	6
344	Novel thiophene-based donor–acceptor scaffolds as cathodes for rechargeable aqueous zinc-ion hybrid supercapacitors. Chemical Communications, 2022, 58, 6689-6692.	2.2	6
345	Two-dimensional self-assembly and electrical properties of the donor-acceptor tetrathiafulvalene-polychlorotriphenylmethyl radical on graphite substrates. Journal of Applied Physics, 2019, 125, 142909.	1.1	5
346	Functionalized 4,4′-Bipyridines: Synthesis and 2D Organization on Highly Oriented Pyrolytic Graphite. Journal of Organic Chemistry, 2021, 86, 3356-3366.	1.7	5
347	Wafer-Scale and Full-Coverage Two-Dimensional Molecular Monolayers Strained by Solvent Surface Tension Balance. ACS Applied Materials & Interfaces, 2021, 13, 26218-26226.	4.0	5
348	Tuning interfacial charge transfer in atomically precise nanographene–graphene heterostructures by engineering van der Waals interactions. Journal of Chemical Physics, 2022, 156, 074702.	1.2	5
349	The role of size and coating in Au nanoparticles incorporated into bi-component polymeric thin-film transistors. Nanoscale, 2014, 6, 5075-5080.	2.8	4
350	Carbonâ€Passivated Ni Electrodes for Charge Injection in Organic Semiconductors. Advanced Materials Interfaces, 2016, 3, 1500501.	1.9	4
351	Maßgeschneiderte funktionelle Graphenâ€Nanokomposite durch einfaches Stapeln, Schneiden und Falten. Angewandte Chemie, 2016, 128, 15698-15700.	1.6	4
352	Self-Assembled Two-Dimensional Supramolecular Networks Characterized by Scanning Tunneling Microscopy and Spectroscopy in Air and under Vacuum. Langmuir, 2018, 34, 7698-7707.	1.6	4
353	Announcing the 2020 ACS Nano Award Lecture Laureates. ACS Nano, 2020, 14, 1213-1215.	7.3	4
354	Growth of ordered poly(ethylene-oxide) thin films from solutions: an SFM study. Synthetic Metals, 2004, 147, 123-125.	2.1	3
355	Unconventional nanotubes self-assembled in alumina channels: morphology and surface potential of isolated nanostructures at surfaces. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1577-1588.	1.6	3
356	Mastering Self-Organization of Functional Materials at Different Length Scale. Advanced Functional Materials, 2011, 21, 1210-1211.	7.8	3
357	Enhancement of Charge Transport in Polythiophene Semiconducting Polymer by Blending with Graphene Nanoparticles. ChemPlusChem, 2019, 84, 1366-1374.	1.3	3
358	Self-Assembly of a Conjugated Polymer: From Molecular Rods to a Nanoribbon Architecture with Molecular Dimensions. , 1999, 5, 2312.		3
359	From Supramolecular Chemistry to Complex Chemical Systems. Chemistry - A European Journal, 2019, 25, 13229-13230.	1.7	2
360	2D materials production and generation of functional inks: general discussion. Faraday Discussions, 2021, 227, 141-162.	1.6	2

#	Article	IF	CITATIONS
361	Self-Assembly of Functionalized Lipophilic Guanosines into Cation-Free Stacked Guanine-Quartets. Journal of Organic Chemistry, 2021, 86, 9970-9978.	1.7	2
362	Biomedical applications: general discussion. Faraday Discussions, 2021, 227, 245-258.	1.6	2
363	Exploring Supramolecular Interactions and Architectures by Scanning Force Microscopies. ChemInform, 2005, 36, no.	0.1	1
364	Influence of the Side Functionalization of Quinquethiophene-S,S-Dioxides on the Morphology of Blends with Poly(3-hexylthiophene): Scanning Force Microscopy Reveals. Journal of Nanoscience and Nanotechnology, 2006, 6, 1673-1677.	0.9	1
365	Singleâ€Molecule Wires Get a Lift. Small, 2009, 5, 1927-1930.	5.2	1
366	Organic Electronics: Non-conventional Processing and Post-processing Methods for the Nanostructuring of Conjugated Materials for Organic Electronics (Adv. Funct. Mater. 7/2011). Advanced Functional Materials, 2011, 21, 1206-1206.	7.8	1
367	Gated Systems for Multifunctional Optoelectronic Devices. Advanced Materials, 2013, 25, 301-301.	11.1	1
368	Perchlorination of Coronene Enhances its Propensity for Selfâ€Assembly on Graphene. ChemPhysChem, 2016, 17, 330-330.	1.0	1
369	Graphene: Modular Graphene-Based 3D Covalent Networks: Functional Architectures for Energy Applications (Small 8/2016). Small, 2016, 12, 1108-1108.	5.2	1
370	Improving the electrical performance of solution processed oligothiophene thin-film transistors via structural similarity blending. Journal of Materials Chemistry C, 2017, 5, 5048-5054.	2.7	1
371	Current crowding issues on nanoscale planar organic transistors for spintronic applications. Nanotechnology, 2018, 29, 365201.	1.3	1
372	Ordered Nanostructures of a [2]Catenane Through Self-Assembly at Surfaces—An STM Study With Sub-Molecular Resolution. ChemPhysChem, 2001, 2, 461-464.	1.0	1
373	Taming Complexity: From Supramolecules to Suprafunctions. Advanced Materials, 2009, 21, 1037-1040.	11.1	0
374	Supramolecular Polymers: Rigid Dimers Formed through Strong Interdigitated H-Bonds Yield Compact 1D Supramolecular Helical Polymers (Small 3/2011). Small, 2011, 7, 286-286.	5.2	0
375	Nanopatterning the Surface with Ordered Supramolecular Architectures: Controlling the Self-assembly of Guanine-based Hydrogen-bonded Motifs. , 2012, , 40-47.		0
376	Molecular Wires: Nanoscale Electrical Investigation of Layerâ€by‣ayer Grown Molecular Wires (Adv.) Tj ETQq0	0 0 rgBT	/Overlock 10
377	Isothermal Titration Calorimetry Study of a Bistable Supramolecular System: Reversible Complexation of Cryptand[2.2.2] with Potassium Ions. ChemPhysChem, 2014, 15, 2743-2748.	1.0	0

³⁷⁸Graphene via Molecule-Assisted Ultrasound-Induced Liquid-Phase Exfoliation: A Supramolecular
Approach. ChemistrySelect, 2016, 1, .0.70

#	Article	IF	CITATIONS
379	Hybrid Organic/Photochromic Approaches to Generate Multifunctional Materials, Interfaces, and Devices. , 2016, , 243-280.		0
380	6. Graphene via Molecule-Assisted Ultrasound- Induced Liquid-Phase Exfoliation: A Supramolecular Approach. , 2017, , .		0
381	(Supra)molecular Approaches to 2D Materials: from Self-Assembly to Molecule-Assisted Liquid-Phase Exfoliation. Microscopy and Microanalysis, 2018, 24, 1572-1573.	0.2	0
382	Chemische Synthese an OberflĤhen mit PrĤision in atomarer GrĶğenordnung: Beherrschung von KomplexitĤund Genauigkeit. Angewandte Chemie, 2019, 131, 18932-18951.	1.6	0
383	Interface Engineering in Organic Devices. Advanced Materials Technologies, 2019, 4, 1900303.	3.0	0
384	Also disorder can improve thin film transistor performance. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s521-s521.	0.0	0