Tadashi Nakaji-Hirabayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6014309/publications.pdf

Version: 2024-02-01

567281 610901 36 604 15 24 g-index citations h-index papers 36 36 36 835 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Concentrated polymer brush-modified cellulose nanofibers promote chondrogenic differentiation of human mesenchymal stem cells by controlling self-assembly. Journal of Materials Chemistry B, 2022, , .	5.8	1
2	Enhanced proliferation and differentiation of human mesenchymal stem cells in the gravityâ€controlled environment. Artificial Organs, 2022, , .	1.9	4
3	Marine Antifouling Coatings Based on Durable Bottlebrush Polymers. ACS Applied Materials & Samp; Interfaces, 2022, 14, 32497-32509.	8.0	5
4	Ultra-low fouling photocrosslinked coatings for the selective capture of cells expressing CD44. Materials Science and Engineering C, 2021, 120, 111630.	7.3	3
5	Controlling the degradation of cellulose scaffolds with Malaprade oxidation for tissue engineering. Journal of Materials Chemistry B, 2020, 8, 7904-7913.	5.8	21
6	Novel anti-biofouling and drug releasing materials for contact lenses. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110859.	5.0	7
7	Well-defined monolith morphology regulates cell adhesion and its functions. Materials Science and Engineering C, 2019, 105, 110108.	7.3	1
8	Bioinactive semi-interpenetrating network gel layers: zwitterionic polymer chains incorporated in a cross-linked polymer brush. Journal of Materials Chemistry B, 2019, 7, 4280-4291.	5.8	7
9	Effect of dualâ€drugâ€releasing micelle–hydrogel composite on wound healing <i>in vivo</i> in fullâ€thickness excision wound rat model. Journal of Biomedical Materials Research - Part A, 2019, 107, 1094-1106.	4.0	19
10	Cytosolic delivery of quantum dots mediated by freezing and hydrophobic polyampholytes in RAW 264.7 cells. Journal of Materials Chemistry B, 2019, 7, 7387-7395.	5.8	4
11	Functional surfaces for efficient differentiation of neural stem/progenitor cells into dopaminergic neurons. Journal of Biomedical Materials Research - Part A, 2019, 107, 860-871.	4.0	6
12	A novel approach for UV-patterning with binary polymer brushes. Colloids and Surfaces B: Biointerfaces, 2018, 161, 42-50.	5.0	11
13	Rapid and highly efficient capture and release of cancer cells using polymeric microfibers immobilized with enzyme-cleavable peptides. Acta Biomaterialia, 2018, 67, 32-41.	8.3	16
14	Titanium alloy modified with anti-biofouling zwitterionic polymer to facilitate formation of bio-mineral layer. Colloids and Surfaces B: Biointerfaces, 2017, 152, 302-310.	5.0	19
15	UVâ€Patterning of Antiâ€Biofouling Zwitterionic Copolymer Layer with an Aromatic Anchor Group. Macromolecular Materials and Engineering, 2017, 302, 1600374.	3.6	2
16	Freezing-Assisted Gene Delivery Combined with Polyampholyte Nanocarriers. ACS Biomaterials Science and Engineering, 2017, 3, 1677-1689.	5.2	6
17	Gradation of proteins and cells attached to the surface of bio-inert zwitterionic polymer brush. Colloids and Surfaces B: Biointerfaces, 2016, 144, 180-187.	5.0	17
18	Optimization of the composition of zwitterionic copolymers for the easy-construction of bio-inactive surfaces. Journal of Biomedical Materials Research - Part A, 2016, 104, 2029-2036.	4.0	9

#	Article	IF	CITATIONS
19	Complex film of chitosan and carboxymethyl cellulose nanofibers. Colloids and Surfaces B: Biointerfaces, 2016, 139, 95-99.	5.0	23
20	Optimization of surfaceâ€immobilized extracellular matrices for the proliferation of neural progenitor cells derived from induced pluripotent stem cells. Biotechnology and Bioengineering, 2015, 112, 2388-2396.	3.3	11
21	Water structure at the interfaces between a zwitterionic self-assembled monolayer/liquid water evaluated by sum-frequency generation spectroscopy. Colloids and Surfaces B: Biointerfaces, 2015, 135, 267-273.	5.0	19
22	Temperature-responsive copolymer brush constructed on a silica microparticle by atom transfer radical polymerization. Colloid and Polymer Science, 2015, 293, 851-859.	2.1	9
23	Patterning of photocleavable zwitterionic polymer brush fabricated on silicon wafer. Colloids and Surfaces B: Biointerfaces, 2014, 123, 878-886.	5.0	14
24	Sum-frequency generation analyses of the structure of water at amphoteric SAM–liquid water interfaces. Colloids and Surfaces B: Biointerfaces, 2014, 121, 264-269.	5.0	12
25	Improvement of Neural Stem Cell Survival in Collagen Hydrogels by Incorporating Laminin-Derived Cell Adhesive Polypeptides. Bioconjugate Chemistry, 2012, 23, 212-221.	3.6	38
26	Carboxymethylbetaine copolymer layer covalently fixed to a glass substrate. Colloids and Surfaces B: Biointerfaces, 2012, 94, 107-113.	5.0	17
27	Design of culture substrates for large-scale expansion of neural stem cells. Biomaterials, 2011, 32, 992-1001.	11.4	24
28	Hyaluronic acid hydrogel loaded with genetically-engineered brain-derived neurotrophic factor as a neural cell carrier. Biomaterials, 2009, 30, 4581-4589.	11.4	60
29	Surface-Anchoring of Spontaneously Dimerized Epidermal Growth Factor for Highly Selective Expansion of Neural Stem Cells. Bioconjugate Chemistry, 2009, 20, 102-110.	3.6	32
30	Essential role of structural integrity and firm attachment of surface-anchored epidermal growth factor in adherent culture of neural stem cells. Biomaterials, 2008, 29, 4403-4408.	11.4	25
31	Self-Assembling Chimeric Protein for the Construction of Biodegradable Hydrogels Capable of Interaction with Integrins Expressed on Neural Stem/Progenitor Cells. Biomacromolecules, 2008, 9, 1411-1416.	5.4	29
32	Multifunctional Chimeric Proteins for the Sequential Regulation of Neural Stem Cell Differentiation. Bioconjugate Chemistry, 2008, 19, 516-524.	3.6	10
33	Oriented immobilization of epidermal growth factor onto culture substrates for the selective expansion of neural stem cells. Biomaterials, 2007, 28, 3517-3529.	11.4	94
34	Inclusion of Bisphenols by a Self-Assembled Monolayer of Thiolated Calix[6]arene on a Gold Surface. Environmental Science & En	10.0	15
35	Wrapping of Single-Walled Carbon Nanotubes with A-B-A Block Telomers. Macromolecular Chemistry and Physics, 2004, 205, 2064-2071.	2.2	14
36	Fabrication of substrates for multiple cell patterning using a copolymer with a UV-degradable oligoethylene glycol side chain. Materials Advances, 0, , .	5.4	0