Balazs Csoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6014204/publications.pdf

Version: 2024-02-01

50	3,345	29 h-index	48
papers	citations		g-index
50	50	50	4207 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Adenosine promotes alternative macrophage activation (i>via (i>A2A and A2B receptors. FASEB Journal, 2012, 26, 376-386.	0.5	306
2	Adenosine Augments IL-10 Production by Macrophages through an A2B Receptor-Mediated Posttranscriptional Mechanism. Journal of Immunology, 2005, 175, 8260-8270.	0.8	237
3	A2B adenosine receptors in immunity and inflammation. Trends in Immunology, 2009, 30, 263-270.	6.8	208
4	A2A adenosine receptors and C/EBP \hat{l}^2 are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood, 2007, 110, 2685-2695.	1.4	182
5	Adenosine A _{2A} receptor activation inhibits T helper 1 and T helper 2 cell development and effector function. FASEB Journal, 2008, 22, 3491-3499.	0.5	164
6	Adenosine and inflammation: what's new on the horizon?. Drug Discovery Today, 2014, 19, 1051-1068.	6.4	139
7	Adenosine signalling in diabetes mellitus—pathophysiology and therapeutic considerations. Nature Reviews Endocrinology, 2015, 11, 228-241.	9.6	133
8	HIF-1: a key mediator in hypoxia (Review). Acta Physiologica Hungarica, 2009, 96, 19-28.	0.9	132
9	Adenosine augments IL-10-induced STAT3 signaling in M2c macrophages. Journal of Leukocyte Biology, 2013, 94, 1309-1315.	3.3	120
10	Adenosine A2A Receptor Inactivation Increases Survival in Polymicrobial Sepsis. Journal of Immunology, 2006, 176, 5616-5626.	0.8	119
11	A2B Adenosine Receptors Protect against Sepsis-Induced Mortality by Dampening Excessive Inflammation. Journal of Immunology, 2010, 185, 542-550.	0.8	117
12	Adenosine A2A receptor activation reduces lung injury in trauma/hemorrhagic shock*. Critical Care Medicine, 2006, 34, 1119-1125.	0.9	107
13	Extracellular ATP protects against sepsis through macrophage P2X7 purinergic receptors by enhancing intracellular bacterial killing. FASEB Journal, 2015, 29, 3626-3637.	0.5	106
14	Adenosine Augments IL-10 Production by Microglial Cells through an A2B Adenosine Receptor-Mediated Process. Journal of Immunology, 2012, 188, 445-453.	0.8	99
15	A2B Adenosine Receptors Prevent Insulin Resistance by Inhibiting Adipose Tissue Inflammation via Maintaining Alternative Macrophage Activation. Diabetes, 2014, 63, 850-866.	0.6	98
16	Adenosine receptor activation ameliorates type 1 diabetes. FASEB Journal, 2007, 21, 2379-2388.	0.5	93
17	Ecto-5′-Nucleotidase (CD73) Decreases Mortality and Organ Injury in Sepsis. Journal of Immunology, 2011, 187, 4256-4267.	0.8	83
18	Macrophage P2X4 receptors augment bacterial killing and protect against sepsis. JCI Insight, 2018, 3, .	5.0	82

#	Article	lF	CITATIONS
19	Adenosine A _{2A} receptor activation protects CD4 ⁺ T lymphocytes against activationâ€induced cell death. FASEB Journal, 2010, 24, 2631-2640.	0.5	66
20	A2B Adenosine Receptor Induces Protective Antihelminth Type 2 Immune Responses. Cell Host and Microbe, 2014, 15, 339-350.	11.0	59
21	All-solid-state surfactant sensing electrode using conductive polymer as internal electric contact. Analytica Chimica Acta, 2001, 437, 67-76.	5.4	58
22	CB2 Cannabinoid Receptors Contribute to Bacterial Invasion and Mortality in Polymicrobial Sepsis. PLoS ONE, 2009, 4, e6409.	2.5	57
23	CD39 improves survival in microbial sepsis by attenuating systemic inflammation. FASEB Journal, 2015, 29, 25-36.	0.5	53
24	Differential regulation of HIF- $1\hat{1}\pm$ isoforms in murine macrophages by TLR4 and adenosine A2A receptor agonists. Journal of Leukocyte Biology, 2009, 86, 681-689.	3.3	46
25	Glycogen phosphorylase inhibition improves beta cell function. British Journal of Pharmacology, 2018, 175, 301-319.	5.4	39
26	Investigation of concentration profiles inside operating biocatalytic sensors with scanning electrochemical microscopy (SECM). Biosensors and Bioelectronics, 2003, 18, 141-149.	10.1	38
27	VEGF-A from Granuloma Macrophages Regulates Granulomatous Inflammation by a Non-angiogenic Pathway during Mycobacterial Infection. Cell Reports, 2019, 27, 2119-2131.e6.	6.4	37
28	Determination of diffusion coefficient in gel and in aqueous solutions using scanning electrochemical microscopy. Journal of Proteomics, 2004, 61, 57-67.	2.4	34
29	Investigational A ₃ adenosine receptor targeting agents. Expert Opinion on Investigational Drugs, 2011, 20, 757-768.	4.1	30
30	A 2A adenosine receptors control pancreatic dysfunction in highâ€fatâ€dietâ€induced obesity. FASEB Journal, 2017, 31, 4985-4997.	0.5	30
31	Colonic motor dysfunctions in a mouse model of high-fat diet-induced obesity: an involvement of A2B adenosine receptors. Purinergic Signalling, 2017, 13, 497-510.	2.2	30
32	Adenosine receptors differentially regulate type 2 cytokine production by ILâ€33–activated bone marrow cells, ILC2s, and macrophages. FASEB Journal, 2018, 32, 829-837.	0.5	29
33	Interplay between colonic inflammation and tachykininergic pathways in the onset of colonic dysmotility in a mouse model of diet-induced obesity. International Journal of Obesity, 2019, 43, 331-343.	3.4	27
34	Stimulation of A2B adenosine receptors protects against trauma–hemorrhagic shock-induced lung injury. Purinergic Signalling, 2013, 9, 427-432.	2.2	26
35	Role of A2A adenosine receptors in regulation of opsonized E. coli-induced macrophage function. Purinergic Signalling, 2007, 3, 447-452.	2.2	24
36	Hypoxia-inducible-factor-1 in trauma and critical care. Journal of Critical Care, 2017, 42, 207-212.	2.2	23

#	Article	IF	CITATIONS
37	The adenosine A2A receptor agonist CGS 21680 fails to ameliorate the course of dextran sulphate-induced colitis in mice. Inflammation Research, 2007, 56, 204-209.	4.0	19
38	Carbon paste-based ion-selective dual function microelectrodes for SECM measurements. Electrochimica Acta, 2009, 54, 3225-3232.	5. 2	18
39	Cellular mosaicism for X-linked polymorphisms and IRAK1 expression presents a distinct phenotype and improves survival following sepsis. Journal of Leukocyte Biology, 2014, 95, 497-507.	3.3	17
40	Role of nonsynaptic communication in regulating the immune response. Neurochemistry International, 2008, 52, 52-59.	3.8	16
41	Adenosine, inflammation pathways and therapeutic challenges. Joint Bone Spine, 2011, 78, 4-6.	1.6	14
42	Lowering the Detection Limit of Solvent Polymeric Ion-Selective Membrane Electrodes. An Experimental Study with Calcium-Selective Micropipette Electrodes. Analytical Letters, 2003, 36, 2909-2923.	1.8	7
43	Periodically interrupted amperometry at membrane coated electrodes: A simplified pulsed amperometry. Talanta, 2006, 69, 281-285.	5.5	7
44	PEDOT Modified Carbon Paste Microelectrodes for Scanning Electrochemical Microscopy. Croatica Chemica Acta, 2011, 84, 407-412.	0.4	4
45	New route for the activation of poly(ADP-ribose) polymerase-1: a passage that links poly(ADP-ribose) polymerase-1 to lipotoxicity?. Biochemical Journal, 2015, 469, e9-e11.	3.7	4
46	Cathepsin D interacts with adenosine A2A receptors in mouse macrophages to modulate cell surface localization and inflammatory signaling. Journal of Biological Chemistry, 2022, 298, 101888.	3.4	4
47	New Piece in the Jigsaw Puzzle: Adipose Tissue–Derived Stem Cells From Obese Subjects Drive Th17 Polarization. Diabetes, 2015, 64, 2341-2343.	0.6	3
48	Transanal Minimally Invasive Surgery: A Promising Alternative for Certain Advanced Rectal Cancer Patients. Journal of Investigative Surgery, 2019, 32, 377-378.	1.3	1
49	Adenosine Triphosphate (ATP)-P2X7 Receptor Activation Improves Survival in Microbial Sepsis by Attenuating Systemic Inflammation. Journal of the American College of Surgeons, 2014, 219, S39-S40.	0.5	0
50	Adenosine in the Immune System. , 2013, , 233-251.		0