James Tardio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6014003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wet Oxidation and Catalytic Wet Oxidation. Industrial & Engineering Chemistry Research, 2006, 45, 1221-1258.	3.7	407
2	Ceria–zirconia modified MnO _x catalysts for gaseous elemental mercury oxidation and adsorption. Catalysis Science and Technology, 2016, 6, 1792-1803.	4.1	122
3	Role of BrÃ,nsted and Lewis acid sites on Ni/TiO2 catalyst for vapour phase hydrogenation of levulinic acid: Kinetic and mechanistic study. Applied Catalysis A: General, 2015, 505, 217-223.	4.3	115
4	Highly stable ytterbium promoted Ni/γ-Al2O3 catalysts for carbon dioxide reforming of methane. Applied Catalysis B: Environmental, 2012, 119-120, 217-226.	20.2	110
5	Highly stable and active Ni-mesoporous alumina catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 2012, 37, 1454-1464.	7.1	108
6	An investigation on the influence of support type for Ni catalysed vapour phase hydrogenation of aqueous levulinic acid to γ-valerolactone. RSC Advances, 2016, 6, 9872-9879.	3.6	92
7	A review of acid leaching of uraninite. Hydrometallurgy, 2015, 151, 10-24.	4.3	83
8	Integration of Interfacial and Alloy Effects to Modulate Catalytic Performance of Metal–Organic-Framework-Derived Cu–Pd Nanocrystals toward Hydrogenolysis of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2019, 7, 10349-10362.	6.7	83
9	Catalytic oxidation and adsorption of elemental mercury over nanostructured CeO ₂ –MnO _x catalyst. RSC Advances, 2015, 5, 30331-30341.	3.6	82
10	Leveraging Cu/CuFe ₂ O ₄ -Catalyzed Biomass-Derived Furfural Hydrodeoxygenation: A Nanoscale Metal–Organic-Framework Template Is the Prime Key. ACS Applied Materials & Interfaces, 2020, 12, 21682-21700.	8.0	75
11	Structural characterization and catalytic evaluation of transition and rare earth metal doped ceria-based solid solutions for elemental mercury oxidation. RSC Advances, 2013, 3, 12963.	3.6	73
12	Porous Organic Polymer-Driven Evolution of High-Performance Cobalt Phosphide Hybrid Nanosheets as Vanillin Hydrodeoxygenation Catalyst. ACS Applied Materials & Interfaces, 2019, 11, 24140-24153.	8.0	57
13	High surface area Au–SBA-15 and Au–MCM-41 materials synthesis: Tryptophan amino acid mediated confinement of gold nanostructures within the mesoporous silica pore walls. Journal of Colloid and Interface Science, 2013, 394, 475-484.	9.4	46
14	Gold nanospikes based microsensor as a highly accurate mercury emission monitoring system. Scientific Reports, 2014, 4, 6741.	3.3	44
15	Creating gold nanoprisms directly on quartz crystal microbalance electrodes for mercury vapor sensing. Nanotechnology, 2011, 22, 305501.	2.6	40
16	Application of ferrous pyrometallurgy to the beneficiation of rare earth bearing iron ores – A review. Minerals Engineering, 2017, 110, 20-30.	4.3	39
17	Catalytic Wet Oxidation of Ferulic Acid (A Model Lignin Compound) Using Heterogeneous Copper Catalysts. Industrial & Engineering Chemistry Research, 2007, 46, 8652-8656.	3.7	38
18	Mercury diffusion in gold and silver thin film electrodes on quartz crystal microbalance sensors. Sensors and Actuators B: Chemical, 2009, 137, 246-252.	7.8	36

James Tardio

#	Article	IF	CITATIONS
19	Nano size Hβ zeolite as an effective support for Ni and Ni Cu for CO x free hydrogen production by catalytic decomposition of methane. International Journal of Hydrogen Energy, 2016, 41, 19855-19862.	7.1	35
20	Economical treatment of reverse osmosis reject of textile industry effluent by electrodialysis–evaporation integrated process. Desalination, 2014, 333, 82-91.	8.2	34
21	Influence of Rare Earth (La, Pr, Nd, Gd, and Sm) Metals on the Methane Decomposition Activity of Ni–Al Catalysts. ACS Sustainable Chemistry and Engineering, 2015, 3, 1298-1305.	6.7	34
22	Hydrodeoxygenation activity of W modified Ni/H-ZSM-5 catalyst for single step conversion of levulinic acid to pentanoic acid: An insight on the reaction mechanism and structure activity relationship. Applied Catalysis A: General, 2018, 550, 142-150.	4.3	34
23	Investigation into coal-based magnetizing roasting of an iron-rich rare earth ore and the associated mineralogical transformations. Minerals Engineering, 2017, 114, 37-49.	4.3	30
24	Study of Surface Morphology Effects on Hg Sorption–Desorption Kinetics on Gold Thin-Films. Journal of Physical Chemistry C, 2012, 116, 2483-2492.	3.1	28
25	Promotional Effect of Cu and Influence of Surface Ni–Cu Alloy for Enhanced H ₂ Yields from CH ₄ Decomposition over Cu-Modified Ni Supported on MCM-41 Catalyst. Energy & Fuels, 2018, 32, 4008-4015.	5.1	27
26	Chemical and microstructural characterisation studies on natural and heat treated brannerite samples. Minerals Engineering, 2012, 39, 276-288.	4.3	26
27	Pyrolysis of activated sludge: Energy analysis and its technical feasibility. Bioresource Technology, 2015, 178, 70-75.	9.6	26
28	Performance assessment and hydrodynamic analysis of a submerged membrane bioreactor for treating dairy industrial effluent. Journal of Hazardous Materials, 2014, 274, 300-313.	12.4	25
29	Interactions between Specific Organic Compounds during Catalytic Wet Oxidation of Bayer Liquor. Industrial & Engineering Chemistry Research, 2004, 43, 847-851.	3.7	24
30	An investigation on the effects of Fe (FeIII, FeII) and oxidation reduction potential on the dissolution of synthetic uraninite (UO2). Hydrometallurgy, 2011, 109, 125-130.	4.3	24
31	Biohydrogen production from kitchen based vegetable waste: Effect of pyrolysis temperature and time on catalysed and non-catalysed operation. Bioresource Technology, 2013, 130, 502-509.	9.6	24
32	Chemical and micro-structural characterisation studies on natural uraninite and associated gangue minerals. Minerals Engineering, 2013, 45, 159-169.	4.3	22
33	Critical analysis of pyrolysis process with cellulosic based municipal waste as renewable source in energy and technical perspective. Bioresource Technology, 2013, 147, 361-368.	9.6	21
34	Synthesis and characterisation of the uranium pyrochlore betafite [(Ca,U)2(Ti,Nb,Ta)2O7]. Journal of Hazardous Materials, 2014, 280, 478-486.	12.4	21
35	The effect of thermal pre-treatment on the dissolution of chalcopyrite (CuFeS2) in sulfuric acid media. Hydrometallurgy, 2017, 169, 68-78.	4.3	20
36	Leaching behaviour of natural and heat-treated brannerite-containing uranium ores in sulphate solutions with iron(III). Minerals Engineering, 2014, 57, 25-35.	4.3	19

JAMES TARDIO

#	Article	IF	CITATIONS
37	Removal of mercury from an alumina refinery aqueous stream. Journal of Hazardous Materials, 2007, 144, 274-282.	12.4	18
38	Pyrolysis Biochar from Cellulosic Municipal Solid Waste as Adsorbent for Azo Dye Removal: Equilibrium Isotherms and Kinetics Analysis. International Journal of Environmental Science and Development, 2015, 6, 67-72.	0.6	18
39	An investigation on the dissolution of synthetic brannerite (UTi2O6). Hydrometallurgy, 2013, 139, 1-8.	4.3	17
40	An investigation on the effects of several anions on the dissolution of synthetic uraninite (UO2). Hydrometallurgy, 2013, 136, 93-104.	4.3	17
41	Characterisation and leaching studies on the uranium mineral betafite [(U,Ca) 2 (Nb,Ti,Ta) 2 O 7]. Minerals Engineering, 2015, 81, 58-70.	4.3	16
42	Characterisation of a ferruginous rare earth bearing lateritic ore and implications for rare earth mineral processing. Minerals Engineering, 2019, 134, 23-36.	4.3	16
43	CH ₄ Cracking over the Cu–Ni/Al-MCM-41 Catalyst for the Simultaneous Production of H ₂ and Highly Ordered Graphitic Carbon Nanofibers. Energy & Fuels, 2019, 33, 12656-12665.	5.1	15
44	Looking into More Eyes Combining <i>In Situ</i> Spectroscopy in Catalytic Biofuel Upgradation with Composition-Graded Ag–Co Core–Shell Nanoalloys. ACS Sustainable Chemistry and Engineering, 2021, 9, 3750-3767.	6.7	15
45	Selective conversion of furfural into tetrahydrofurfuryl alcohol using a heteropoly acid-based material as a hydrogenation catalyst. Sustainable Energy and Fuels, 2020, 4, 4768-4779.	4.9	14
46	One-pot conversion of levulinic acid into gamma-valerolactone over a stable Ru tungstosphosphoric acid catalyst. Fuel, 2021, 289, 119900.	6.4	14
47	Catalytic Wet Oxidation of Stripped Sour Water from an Oil-Shale Refining Process. Industrial & Engineering Chemistry Research, 2004, 43, 6363-6368.	3.7	13
48	Low-Temperature Wet Oxidation of Sodium Salts of Low Molecular Weight Mono- and Dicarboxylic Acids in Synthetic Bayer Liquor. Industrial & Engineering Chemistry Research, 2004, 43, 669-674.	3.7	13
49	An investigation on the role of ytterbium in ytterbium promoted γ-alumina-supported nickel catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 2013, 38, 14223-14231.	7.1	13
50	Cold vapor integrated quartz crystal microbalance (CV-QCM) based detection of mercury ions with gold nanostructures. Sensors and Actuators B: Chemical, 2019, 290, 453-458.	7.8	13
51	Selective Organic Removal from the Alumina Industrial Liquor:Â Wet Oxidation and Catalytic Wet Oxidation of Disodium Malonate. Industrial & Engineering Chemistry Research, 2002, 41, 1166-1170.	3.7	12
52	Comparison of the chemistry and mineralogy of ilmenite concentrates sourced from fluvial (Brahmaputra River) and beach placer (Cox's Bazar) deposits, Bangladesh. Ore Geology Reviews, 2020, 117, 103271.	2.7	12
53	Catalytic Wet Air Oxidation of Industrial Aqueous Streams. Catalysis Surveys From Asia, 2007, 11, 70-86.	2.6	11
54	Ni/H-ZSM-5 as a stable and promising catalyst for CO _x free H ₂ production by CH ₄ decomposition. RSC Advances, 2016, 6, 34600-34607.	3.6	11

James Tardio

#	Article	IF	CITATIONS
55	Studies on the adsorption of phosphate using lanthanide functionalized KIT- 6. Microporous and Mesoporous Materials, 2019, 286, 77-83.	4.4	11
56	Selectivty Assessments of a Sequential Extraction Procedure for Potential Trace Metals' Mobility and Bioavailability in Phosphate Rocks from Jordan Phosphate Mines. Soil and Sediment Contamination, 2014, 23, 417-436.	1.9	10
57	Studying mercury partition in monoethylene glycol (MEC) used in gas facilities. Fuel, 2015, 159, 917-924.	6.4	10
58	Geochemistry of Recent Brahmaputra River Sediments: Provenance, Tectonics, Source Area Weathering and Depositional Environment. Minerals (Basel, Switzerland), 2020, 10, 813.	2.0	10
59	Mercury Migration and Speciation Study during Monoethylene Glycol Regeneration Processes. Industrial & Engineering Chemistry Research, 2015, 54, 5349-5355.	3.7	9
60	Effect of pyrolysis parameters on yield and composition of gaseous products from activated sludge: towards sustainable biorefinery. Biomass Conversion and Biorefinery, 2015, 5, 227-235.	4.6	9
61	Uranium leaching from synthetic betafite: [(Ca,U)2(Ti,Nb,Ta)2O7]. International Journal of Mineral Processing, 2017, 160, 58-67.	2.6	9
62	Machine learning aided experimental approach for evaluating the growth kinetics of Candida antarctica for lipase production. Bioresource Technology, 2022, 352, 127087.	9.6	9
63	Wet peroxide oxidation and catalytic wet oxidation of stripped sour water produced during oil shale refining. Journal of Hazardous Materials, 2007, 146, 589-594.	12.4	8
64	Gold Coated Nanostructured Molybdenum Oxide Mercury Vapour Quartz Crystal Microbalance Sensor. Sensor Letters, 2008, 6, 231-236.	0.4	8
65	Synthesis of very high surface area Au-SBA-15 materials by confinement of gold nanoparticles formation within silica pore walls. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 429, 149-158.	4.7	7
66	Kinetics of uranium extraction from coffinite—A comparison with other common uranium minerals. Transactions of Nonferrous Metals Society of China, 2018, 28, 2135-2142.	4.2	7
67	Experimental study into the beneficiation of a ferruginous rare earth bearing lateritic ore by magnetising roasting and magnetic separation. Minerals Engineering, 2019, 137, 303-318.	4.3	6
68	An investigation into potential pathways for nickel and cobalt loss during impurity removal from synthetic nickel laterite pressure acid leach solutions via partial neutralisation. Hydrometallurgy, 2021, 202, 105595.	4.3	6
69	Fundamentals of Wet Oxidation of Bayer-Process Liquor: Reactivity of Malonates. Industrial & Engineering Chemistry Research, 2010, 49, 5347-5352.	3.7	5
70	The effect of [Fe]TOT on the dissolution of synthetic Pb-doped UO2 and Th-doped UO2. Minerals Engineering, 2014, 58, 26-38.	4.3	5
71	Distribution, Separation and Characterisation of Valuable Heavy Minerals from the Brahmaputra River Basin, Kurigram District, Bangladesh. Minerals (Basel, Switzerland), 2021, 11, 786.	2.0	5
72	Characterisation of a uranium ore using multiple X-ray diffraction based methods. Minerals Engineering, 2010, 23, 739-745.	4.3	4

JAMES TARDIO

#	Article	IF	CITATIONS
73	VOC emission from alumina calcination stacks caused by thermal decomposition of organic additives. Journal of Environmental Chemical Engineering, 2014, 2, 626-631.	6.7	4
74	Development of a new near infrared (NIR) tool for quantifying coffinite (USiO 4) in a moderately complex uranium ore analogue. Journal of Geochemical Exploration, 2017, 182, 80-93.	3.2	4
75	Catalytic wet oxidation of ferulic acid. International Journal of Environmental Technology and Management, 2008, 9, 87.	0.2	3
76	A study into the behaviour of nickel, cobalt and metal impurities during partial neutralisation of synthetic nickel laterite pressure leach solutions and pulps. Hydrometallurgy, 2021, 202, 105604.	4.3	3
77	Electro-deposition of gold nano-structures on gold Quartz Crystal Microbalance (QCM) electrodes for enhanced mercury vapour sensitivity in the presence of interferent gases. , 2008, , .		1
78	Phase Equilibria Study of CaO-Al2O3-SiO2-Na2O Slags for Smelting Waste Printed Circuit Boards. Jom, 2021, 73, 1889.	1.9	1