
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/601350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nature Genetics, 2011, 43, 663-667.	9.4	478
2	Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Human Molecular Genetics, 2014, 23, 2440-2446.	1.4	316
3	<i>MAX</i> Mutations Cause Hereditary and Sporadic Pheochromocytoma and Paraganglioma. Clinical Cancer Research, 2012, 18, 2828-2837.	3.2	277
4	An Update on the Genetics of Paraganglioma, Pheochromocytoma, and Associated Hereditary Syndromes. Hormone and Metabolic Research, 2012, 44, 328-333.	0.7	269
5	SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncology, The, 2010, 11, 366-372.	5.1	256
6	Tumoral and tissueâ€specific expression of the major human βâ€ŧubulin isotypes. Cytoskeleton, 2010, 67, 214-223.	1.0	221
7	Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: a multicentre, observational, prospective study. Lancet Oncology, The, 2011, 12, 1143-1150.	5.1	217
8	Consensus Statement on next-generation-sequencing-based diagnostic testing of hereditary phaeochromocytomas and paragangliomas. Nature Reviews Endocrinology, 2017, 13, 233-247.	4.3	198
9	Genetics, diagnosis, management and future directions of research of phaeochromocytoma and paraganglioma: a position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. Journal of Hypertension, 2020, 38, 1443-1456.	0.3	190
10	The miR-200 family controls Â-tubulin III expression and is associated with paclitaxel-based treatment response and progression-free survival in ovarian cancer patients. Endocrine-Related Cancer, 2010, 18, 85-95.	1.6	188
11	Research Resource: Transcriptional Profiling Reveals Different Pseudohypoxic Signatures in SDHB and VHL-Related Pheochromocytomas. Molecular Endocrinology, 2010, 24, 2382-2391.	3.7	179
12	Clinical Predictors for Germline Mutations in Head and Neck Paraganglioma Patients: Cost Reduction Strategy in Genetic Diagnostic Process as Fall-Out. Cancer Research, 2009, 69, 3650-3656.	0.4	178
13	SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Modern Pathology, 2015, 28, 807-821.	2.9	176
14	Spectrum and Prevalence of <i>FP/TMEM127</i> Gene Mutations in Pheochromocytomas and Paragangliomas. JAMA - Journal of the American Medical Association, 2010, 304, 2611.	3.8	174
15	Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4101-4105.	3.3	173
16	MAX and MYC: A Heritable Breakup. Cancer Research, 2012, 72, 3119-3124.	0.4	144
17	Whole-Exome Sequencing Identifies MDH2 as a New Familial Paraganglioma Gene. Journal of the National Cancer Institute, 2015, 107, .	3.0	143
18	Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. Human Molecular Genetics, 2013, 22, 2169-2176.	1.4	142

#	Article	IF	CITATIONS
19	The Variant rs1867277 in FOXE1 Gene Confers Thyroid Cancer Susceptibility through the Recruitment of USF1/USF2 Transcription Factors. PLoS Genetics, 2009, 5, e1000637.	1.5	140
20	GermlineNF1Mutational Spectra and Loss-of-Heterozygosity Analyses in Patients with Pheochromocytoma and Neurofibromatosis Type 1. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2784-2792.	1.8	126
21	Genetics of Pheochromocytoma and Paraganglioma in Spanish Patients. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 1701-1705.	1.8	120
22	Characteristics of Pediatric vs Adult Pheochromocytomas and Paragangliomas. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1122-1132.	1.8	120
23	Head and Neck Paragangliomas in Von Hippel-Lindau Disease and Multiple Endocrine Neoplasia Type 2. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 1938-1944.	1.8	112
24	Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharmacogenomics Journal, 2011, 11, 121-129.	0.9	112
25	Krebs Cycle Metabolite Profiling for Identification and Stratification of Pheochromocytomas/Paragangliomas due to Succinate Dehydrogenase Deficiency. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 3903-3911.	1.8	111
26	Overexpression and activation of EGFR and VEGFR2 in medullary thyroid carcinomas is related to metastasis. Endocrine-Related Cancer, 2010, 17, 7-16.	1.6	108
27	Cytogenetic study of B-cell lymphoma of mucosa-associated lymphoid tissue. Cancer Genetics and Cytogenetics, 1992, 62, 208-209.	1.0	104
28	Prognosis of Malignant Pheochromocytoma and Paraganglioma (MAPP-Prono Study): A European Network for the Study of Adrenal Tumors Retrospective Study. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2367-2374.	1.8	103
29	Recommendations for somatic and germline genetic testing of single pheochromocytoma and paraganglioma based on findings from a series of 329 patients. Journal of Medical Genetics, 2015, 52, 647-656.	1.5	102
30	DNA Methylation Signatures Identify Biologically Distinct Thyroid Cancer Subtypes. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 2811-2821.	1.8	100
31	Use of extracellular vesicles from lymphatic drainage as surrogate markers of melanoma progression and <i>BRAF V600E</i> mutation. Journal of Experimental Medicine, 2019, 216, 1061-1070.	4.2	99
32	Polymorphisms G691S/S904S of RET as genetic modifiers of MEN 2A. Cancer Research, 2003, 63, 1814-7.	0.4	95
33	Evaluating HapMap SNP data transferability in a large-scale genotyping project involving 175 cancer-associated genes. Human Genetics, 2006, 118, 669-679.	1.8	92
34	Expression Profiling of T-Cell Lymphomas Differentiates Peripheral and Lymphoblastic Lymphomas and Defines Survival Related Genes. Clinical Cancer Research, 2004, 10, 4971-4982.	3.2	88
35	PupaSNP Finder: a web tool for finding SNPs with putative effect at transcriptional level. Nucleic Acids Research, 2004, 32, W242-W248.	6.5	86
36	Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information. Oncogene, 2008, 27, 1554-1561.	2.6	86

#	Article	IF	CITATIONS
37	Hypermethylation of a 5′ CpG island of p16 is a frequent event in non-Hodgkin's lymphoma. Leukemia, 1997, 11, 425-428.	3.3	81
38	International consensus on initial screening and follow-up of asymptomatic SDHx mutation carriers. Nature Reviews Endocrinology, 2021, 17, 435-444.	4.3	80
39	Molecular analysis of the BRCA1 and BRCA2 genes in 32 breast and/or ovarian cancer Spanish families. British Journal of Cancer, 2000, 82, 1266-1270.	2.9	78
40	GrossSDHB deletions in patients with paraganglioma detected by multiplex PCR: A possible hot spot?. Genes Chromosomes and Cancer, 2006, 45, 213-219.	1.5	73
41	Pathogenicity of DNA Variants and Double Mutations in Multiple Endocrine Neoplasia Type 2 and Von Hippel-Lindau Syndrome. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 308-313.	1.8	73
42	Prospective study assessing hypoxia-related proteins as markers for the outcome of treatment with sunitinib in advanced clear-cell renal cell carcinoma. Annals of Oncology, 2013, 24, 2409-2414.	0.6	73
43	Targeted Exome Sequencing of Krebs Cycle Genes Reveals Candidate Cancer–Predisposing Mutations in Pheochromocytomas and Paragangliomas. Clinical Cancer Research, 2017, 23, 6315-6324.	3.2	73
44	Gain-of-function mutations in DNMT3A in patients with paraganglioma. Genetics in Medicine, 2018, 20, 1644-1651.	1.1	73
45	Opposing effects of HIF1α and HIF2α on chromaffin cell phenotypic features and tumor cell proliferation: Insights from MYCâ€associated factor X. International Journal of Cancer, 2014, 135, 2054-2064.	2.3	72
46	SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency. Oncogene, 2013, 32, 4052-4056.	2.6	70
47	Multiple Hereditary Infundibulocystic Basal Cell Carcinomas. Archives of Dermatology, 1999, 135, 1227-35.	1.7	69
48	Molecular characterisation of a common SDHB deletion in paraganglioma patients. Journal of Medical Genetics, 2007, 45, 233-238.	1.5	69
49	Multidisciplinary practice guidelines for the diagnosis, genetic counseling and treatment of pheochromocytomas and paragangliomas. Clinical and Translational Oncology, 2021, 23, 1995-2019.	1.2	69
50	Genome-wide association study identifies ephrin type A receptors implicated in paclitaxel induced peripheral sensory neuropathy. Journal of Medical Genetics, 2013, 50, 599-605.	1.5	67
51	DNA methylation profiling of well-differentiated thyroid cancer uncovers markers of recurrence free survival. International Journal of Cancer, 2014, 135, 598-610.	2.3	66
52	Are we overestimating the penetrance of mutations in SDHB?. Human Mutation, 2010, 31, 761-762.	1.1	64
53	Profiling of Somatic Mutations in Phaeochromocytoma and Paraganglioma by Targeted Next Generation Sequencing Analysis. International Journal of Endocrinology, 2015, 2015, 1-8.	0.6	64
54	Functional characterization of a rare germline mutation in the gene encoding the cyclin-dependent kinase inhibitor p27Kip1 (CDKN1B) in a Spanish patient with multiple endocrine neoplasia-like phenotype. European Journal of Endocrinology, 2012, 166, 551-560.	1.9	63

#	Article	IF	CITATIONS
55	PheoSeq. Journal of Molecular Diagnostics, 2017, 19, 575-588.	1.2	63
56	PPP1CA contributes to the senescence program induced by oncogenic Ras. Carcinogenesis, 2007, 29, 491-499.	1.3	61
57	Regulatory Polymorphisms in β-Tubulin IIa Are Associated with Paclitaxel-Induced Peripheral Neuropathy. Clinical Cancer Research, 2012, 18, 4441-4448.	3.2	61
58	Whole-Exome Sequencing Reveals Defective <i>CYP3A4</i> Variants Predictive of Paclitaxel Dose-Limiting Neuropathy. Clinical Cancer Research, 2015, 21, 322-328.	3.2	61
59	Identification of novel SDHD mutations in patients with phaeochromocytoma and/or paraganglioma. European Journal of Human Genetics, 2002, 10, 457-461.	1.4	60
60	Metabolome-guided genomics to identify pathogenic variants in isocitrate dehydrogenase, fumarate hydratase, and succinate dehydrogenase genes in pheochromocytoma and paraganglioma. Genetics in Medicine, 2019, 21, 705-717.	1.1	60
61	Cellular senescence bypass screen identifies new putative tumor suppressor genes. Oncogene, 2008, 27, 1961-1970.	2.6	59
62	Characterization of novel CYP2C8 haplotypes and their contribution to paclitaxel and repaglinide metabolism. Pharmacogenomics Journal, 2008, 8, 268-277.	0.9	59
63	15 YEARS OF PARAGANGLIOMA: The association of pituitary adenomas and phaeochromocytomas or paragangliomas. Endocrine-Related Cancer, 2015, 22, T105-T122.	1.6	59
64	ERCC4 Associated with Breast Cancer Risk: A Two-Stage Case-Control Study Using High-throughput Genotyping. Cancer Research, 2006, 66, 9420-9427.	0.4	58
65	Epigenetic analysis of HIC1, CASP8, FLIP, TSP1, DCR1, DCR2, DR4, DR5, KvDMR1, H19 and preferential 11p15.5 maternal-allele loss in von Hippel-Lindau and sporadic phaeochromocytomas. Endocrine-Related Cancer, 2005, 12, 161-172.	1.6	56
66	Integrative multi-omics analysis identifies a prognostic miRNA signature and a targetable miR-21-3p/TSC2/mTOR axis in metastatic pheochromocytoma/paraganglioma. Theranostics, 2019, 9, 4946-4958.	4.6	54
67	DNA Methylation Profiling in Pheochromocytoma and Paraganglioma Reveals Diagnostic and Prognostic Markers. Clinical Cancer Research, 2015, 21, 3020-3030.	3.2	53
68	Polymorphisms in RET and Its Coreceptors and Ligands as Genetic Modifiers of Multiple Endocrine Neoplasia Type 2A. Cancer Research, 2006, 66, 1177-1180.	0.4	52
69	Integrative analysis of miRNA and mRNA expression profiles in pheochromocytoma and paraganglioma identifies genotype-specific markers and potentially regulated pathways. Endocrine-Related Cancer, 2013, 20, 477-493.	1.6	52
70	MicroRNA deep-sequencing reveals master regulators of follicular and papillary thyroid tumors. Modern Pathology, 2015, 28, 748-757.	2.9	52
71	Recurrent Germline DLST Mutations in Individuals with Multiple Pheochromocytomas and Paragangliomas. American Journal of Human Genetics, 2019, 104, 651-664.	2.6	51
72	Mutational and gross deletion study of the MEN1 gene and correlation with clinical features in Spanish patients. Journal of Medical Genetics, 2003, 40, 72e-72.	1.5	48

#	Article	IF	CITATIONS
73	Association studies in thyroid cancer susceptibility: are we on the right track?. Journal of Molecular Endocrinology, 2011, 47, R43-R58.	1.1	48
74	High frequency and founder effect of the CYP3A4*20 loss-of-function allele in the Spanish population classifies CYP3A4 as a polymorphic enzyme. Pharmacogenomics Journal, 2015, 15, 288-292.	0.9	48
75	Malignant degeneration of presacral teratoma in the Currarino anomaly. , 2004, 128A, 299-304.		46
76	Metabologenomics of Phaeochromocytoma and Paraganglioma: An Integrated Approach for Personalised Biochemical and Genetic Testing. Clinical Biochemist Reviews, 2017, 38, 69-100.	3.3	46
77	Age-related neoplastic risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germ line RET Cys634Trp (TGC>TGG) mutation. Endocrine-Related Cancer, 2008, 15, 1035-1041.	1.6	45
78	Role of MDH2 pathogenic variant in pheochromocytoma and paraganglioma patients. Genetics in Medicine, 2018, 20, 1652-1662.	1.1	45
79	Germline Homozygous Mutations at Codon 804 in theRETProtooncogene in Medullary Thyroid Carcinoma/Multiple Endocrine Neoplasia Type 2A Patients. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 3454-3457.	1.8	44
80	Genetics of pheochromocytoma and paraganglioma in Spanish pediatric patients. Endocrine-Related Cancer, 2013, 20, L1-L6.	1.6	44
81	Thyroid cancer <scp>GWAS</scp> identifies 10q26.12 and 6q14.1 as novel susceptibility loci and reveals genetic heterogeneity among populations. International Journal of Cancer, 2015, 137, 1870-1878.	2.3	44
82	Prevalence of BRCA1 and BRCA2 Jewish mutations in Spanish breast cancer patients. British Journal of Cancer, 1999, 79, 1302-1303.	2.9	43
83	Genetic and epigenetic profile of sporadic pheochromocytomas. Journal of Medical Genetics, 2004, 41, 30e-30.	1.5	42
84	Expression of CYP3A4 as a predictor of response to chemotherapy in peripheral T-cell lymphomas. Blood, 2007, 110, 3345-3351.	0.6	42
85	Usefulness of Negative and Weak–Diffuse Pattern of SDHB Immunostaining in Assessment of SDH Mutations in Paragangliomas and Pheochromocytomas. Endocrine Pathology, 2013, 24, 199-205.	5.2	42
86	H-RAS Mutations Are Restricted to Sporadic Pheochromocytomas Lacking Specific Clinical or Pathological Features: Data From a Multi-Institutional Series. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1376-E1380.	1.8	42
87	A novel AXIN2 germline variant associated with attenuated FAP without signs of oligondontia or ectodermal dysplasia. European Journal of Human Genetics, 2014, 22, 423-426.	1.4	42
88	Epigenetic Mutation of the Succinate Dehydrogenase C Promoter in a Patient With Two Paragangliomas. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 359-363.	1.8	42
89	Loss of the actin regulator HSPC300 results in clear cell renal cell carcinoma protection in Von Hippel-Lindau patients. Human Mutation, 2007, 28, 613-621.	1.1	41
90	Rationalization of Genetic Testing in Patients with Apparently Sporadic Pheochromocytoma/Paraganglioma. Hormone and Metabolic Research, 2009, 41, 672-675.	0.7	41

#	Article	IF	CITATIONS
91	Detection of the first gross CDC73 germline deletion in an HPTâ€JT syndrome family. Genes Chromosomes and Cancer, 2011, 50, 922-929.	1.5	41
92	Shorter telomere length is associated with increased ovarian cancer risk in both familial and sporadic cases. Journal of Medical Genetics, 2012, 49, 341-344.	1.5	41
93	Clinical and genetic characterization of classical forms of familial adenomatous polyposis: a Spanish population study. Annals of Oncology, 2011, 22, 903-909.	0.6	39
94	Deep sequencing reveals microRNAs predictive of antiangiogenic drug response. JCI Insight, 2016, 1, e86051.	2.3	39
95	Hypermethylation of p15/ink4b/MTS2 gene is differentially implicated among non-Hodgkin's lymphomas. Leukemia, 1998, 12, 937-941.	3.3	37
96	<i>SDHC</i> mutation in an elderly patient without familial antecedents. Clinical Endocrinology, 2008, 69, 906-910.	1.2	37
97	Association Study of 69 Genes in the Ret Pathway Identifies Low-penetrance Loci in Sporadic Medullary Thyroid Carcinoma. Cancer Research, 2007, 67, 9561-9567.	0.4	36
98	Allelic variant at â^'79 (C>T) in CDKN1B (p27Kip1) confers an increased risk of thyroid cancer and alters mRNA levels. Endocrine-Related Cancer, 2010, 17, 317-328.	1.6	35
99	Differential Gene Expression of Medullary Thyroid Carcinoma Reveals Specific Markers Associated with Genetic Conditions. American Journal of Pathology, 2013, 182, 350-362.	1.9	35
100	Cytochrome P450 3A5 is highly expressed in normal prostate cells but absent in prostate cancer. Endocrine-Related Cancer, 2007, 14, 645-654.	1.6	34
101	Multilayer OMIC Data in Medullary Thyroid Carcinoma Identifies the STAT3 Pathway as a Potential Therapeutic Target in <i>RET</i> M918T Tumors. Clinical Cancer Research, 2017, 23, 1334-1345.	3.2	34
102	Sino-European Differences in the Genetic Landscape and Clinical Presentation of Pheochromocytoma and Paraganglioma. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 3295-3307.	1.8	34
103	A novel candidate region linked to development of both pheochromocytoma and head/neck paraganglioma. Genes Chromosomes and Cancer, 2005, 42, 260-268.	1.5	33
104	HEREDITARY ENDOCRINE TUMOURS: CURRENT STATE-OF-THE-ART AND RESEARCH OPPORTUNITIES: Metastatic pheochromocytomas and paragangliomas: proceedings of the MEN2019 workshop. Endocrine-Related Cancer, 2020, 27, T41-T52.	1.6	33
105	HIF2α supports pro-metastatic behavior in pheochromocytomas/paragangliomas. Endocrine-Related Cancer, 2020, 27, 625-640.	1.6	33
106	Plasma metanephrines and prospective prediction of tumor location, size and mutation type in patients with pheochromocytoma and paraganglioma. Clinical Chemistry and Laboratory Medicine, 2021, 59, 353-363.	1.4	32
107	G12S and H50R variations are polymorphisms in the SDHD gene. Genes Chromosomes and Cancer, 2003, 37, 220-221.	1.5	31
108	Brick1 Is an Essential Regulator of Actin Cytoskeleton Required for Embryonic Development and Cell Transformation. Cancer Research, 2010, 70, 9349-9359.	0.4	31

#	Article	IF	CITATIONS
109	Sprouty1 is a candidate tumor-suppressor gene in medullary thyroid carcinoma. Oncogene, 2012, 31, 3961-3972.	2.6	31
110	A high-resolution map of the regulator of the complement activation gene cluster on 1q32 that integrates new genes and markers. Immunogenetics, 1997, 45, 422-427.	1.2	29
111	Overexpression of the S-phase kinase-associated protein 2 in thyroid cancer. Endocrine-Related Cancer, 2007, 14, 405-420.	1.6	29
112	Systematic comparison of sporadic and syndromic pancreatic islet cell tumors. Endocrine-Related Cancer, 2010, 17, 875-883.	1.6	29
113	Hsaâ€miRâ€139â€5p is a prognostic thyroid cancer marker involved in HNRNPFâ€mediated alternative splicing. International Journal of Cancer, 2020, 146, 521-530.	2.3	29
114	Molecular characterization of chromophobe renal cell carcinoma reveals mTOR pathway alterations in patients with poor outcome. Modern Pathology, 2020, 33, 2580-2590.	2.9	29
115	Genetic characterization and structural analysis of VHL Spanish families to define genotype-phenotype correlations. Human Mutation, 2004, 23, 160-169.	1.1	28
116	Germline ESR2 mutation predisposes to medullary thyroid carcinoma and causes up-regulation of RET expression. Human Molecular Genetics, 2016, 25, 1836-1845.	1.4	28
117	Polymorphisms associated with everolimus pharmacokinetics, toxicity and survival in metastatic breast cancer. PLoS ONE, 2017, 12, e0180192.	1.1	27
118	Hematologic β-Tubulin VI Isoform Exhibits Genetic Variability That Influences Paclitaxel Toxicity. Cancer Research, 2012, 72, 4744-4752.	0.4	26
119	Evaluation of a functional epigenetic approach to identify promoter region methylation in phaeochromocytoma and neuroblastoma. Endocrine-Related Cancer, 2008, 15, 777-786.	1.6	25
120	Functional and in silico assessment of MAX variants of unknown significance. Journal of Molecular Medicine, 2015, 93, 1247-1255.	1.7	25
121	ATRX driver mutation in a composite malignant pheochromocytoma. Cancer Genetics, 2016, 209, 272-277.	0.2	24
122	Impact of Extrinsic and Intrinsic Hypoxia on Catecholamine Biosynthesis in Absence or Presence of Hif2α in Pheochromocytoma Cells. Cancers, 2019, 11, 594.	1.7	24
123	Novel rhodopsin mutation in an autosomal dominant retinitis pigmentosa family: phenotypic variation in both heterozygote and homozygote Val137Met mutant patients. Human Genetics, 1996, 98, 51-54.	1.8	23
124	Optimizing Genetic Workup in Pheochromocytoma and Paraganglioma by Integrating Diagnostic and Research Approaches. Cancers, 2019, 11, 809.	1.7	23
125	Metabolomics, machine learning and immunohistochemistry to predict succinate dehydrogenase mutational status in phaeochromocytomas and paragangliomas. Journal of Pathology, 2020, 251, 378-387.	2.1	23
126	Pheochromocytomas and Paragangliomas: Bypassing Cellular Respiration. Cancers, 2019, 11, 683.	1.7	22

#	Article	IF	CITATIONS
127	Molecular analysis of the six most recurrent mutations in the BRCA1 gene in 87 Spanish breast/ovarian cancer families. Cancer Letters, 1998, 123, 153-158.	3.2	21
128	Thyroid paraganglioma. Report of 3 cases and description of an immunohistochemical profile useful in the differential diagnosis with medullary thyroid carcinoma, based on complementary DNA array results. Human Pathology, 2012, 43, 1103-1112.	1.1	21
129	Molecular study of a new family with hereditary renal cell carcinoma and a translocation t(3;8)(p13;q24.1). Human Genetics, 2003, 112, 178-185.	1.8	20
130	Pediatric paraganglioma: An early manifestation of an adult disease secondary to germline mutations. Pediatric Blood and Cancer, 2006, 47, 785-789.	0.8	20
131	Increased Global DNA Hypomethylation in Distant Metastatic and Dedifferentiated Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 397-406.	1.8	20
132	Concomitant Medications and Risk of Chemotherapy-Induced Peripheral Neuropathy. Oncologist, 2019, 24, e784-e792.	1.9	20
133	Expression of Contactin 4 Is Associated With Malignant Behavior in Pheochromocytomas and Paragangliomas. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 46-55.	1.8	19
134	Next-generation panel sequencing identifies NF1 germline mutations in three patients with pheochromocytoma but no clinical diagnosis of neurofibromatosis type 1. European Journal of Endocrinology, 2018, 178, K1-K9.	1.9	19
135	Retinoic acid receptor alpha1 variants, RARalpha1DeltaB and RARalpha1DeltaBC, define a new class of nuclear receptor isoforms. Nucleic Acids Research, 2001, 29, 4901-4908.	6.5	18
136	Coincidental LOH regions in mouse and humans: evidence for novel tumor suppressor loci at 9q22?q34 in non-Hodgkin?s lymphomas. Leukemia Research, 2003, 27, 627-633.	0.4	18
137	VEGF, VEGFR3, and PDGFRB Protein Expression Is Influenced by <i>RAS</i> Mutations in Medullary Thyroid Carcinoma. Thyroid, 2014, 24, 1251-1255.	2.4	18
138	El Registro Molecular de Adenomas Hipofisarios (REMAH): una apuesta de futuro de la EndocrinologÃa espaA±ola por la medicina individualizada y la investigación traslacional. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2016, 63, 274-284.	0.8	18
139	Biallelic <i>TSC2</i> Mutations in a Patient With Chromophobe Renal Cell Carcinoma Showing Extraordinary Response to Temsirolimus. Journal of the National Comprehensive Cancer Network: JNCCN, 2018, 16, 352-358.	2.3	18
140	Determinants of disease-specific survival in patients with and without metastatic pheochromocytoma and paraganglioma. European Journal of Cancer, 2022, 169, 32-41.	1.3	18
141	Somatic stability in chorionic villi samples and other Huntington fetal tissues. Human Genetics, 1995, 96, 229-232.	1.8	17
142	Incidence of homogeneously staining regions in non-Hodgkin lymphomas. Cancer Genetics and Cytogenetics, 1996, 87, 1-3.	1.0	17
143	Influence of RET mutations on the expression of tyrosine kinases in medullary thyroid carcinoma. Endocrine-Related Cancer, 2013, 20, 611-619.	1.6	17
144	Immunohistochemical expression of stem cell markers in pheochromocytomas/paragangliomas is associated with SDHx mutations. European Journal of Endocrinology, 2015, 173, 43-52.	1.9	17

#	Article	IF	CITATIONS
145	Lack of utility of SDHB mutation testing in adrenergic metastatic phaeochromocytoma. European Journal of Endocrinology, 2015, 172, 89-95.	1.9	17
146	Primary hyperparathyroidism as first manifestation in multiple endocrine neoplasia type 2A: an international multicenter study. Endocrine Connections, 2020, 9, 489-497.	0.8	17
147	The RET IVS1-126G>T Variant Is Strongly Associated with the Development of Sporadic Medullary Thyroid Cancer. Thyroid, 2004, 14, 329-331.	2.4	16
148	Exceptional Response to Temsirolimus in a Metastatic Clear Cell Renal Cell Carcinoma With an Early Novel MTOR -Activating Mutation. Journal of the National Comprehensive Cancer Network: JNCCN, 2017, 15, 1310-1315.	2.3	16
149	Targeted Sequencing Reveals Low-Frequency Variants in <i>EPHA</i> Genes as Markers of Paclitaxel-Induced Peripheral Neuropathy. Clinical Cancer Research, 2017, 23, 1227-1235.	3.2	16
150	Frequent allelic losses of 9p21 markers and low incidence of mutations at p16(CDKN2) gene in non-Hodgkin lymphomas of B-cell lineage. Cancer Genetics and Cytogenetics, 1997, 98, 63-68.	1.0	15
151	SDHB mutation analysis in familial and sporadic phaeochromocytoma identifies a novel mutation. Journal of Medical Genetics, 2002, 39, 64e-64.	1.5	15
152	About the origin and development of hereditary conventional renal cell carcinoma in a four-generation t(3;8)(p14.1;q24.23) family. European Journal of Human Genetics, 2005, 13, 570-578.	1.4	15
153	Oncogenic features of the bone morphogenic protein 7 (BMP7) in pheochromocytoma. Oncotarget, 2015, 6, 39111-39126.	0.8	15
154	Correlation between cytogenetic and molecular analysis of t(14;18) in follicular lymphomas. Cancer Genetics and Cytogenetics, 1992, 59, 68-72.	1.0	14
155	Genetic and clinical analysis in 10 Spanish patients with multiple endocrine neoplasia type 1. European Journal of Human Genetics, 1999, 7, 585-589.	1.4	14
156	Complex cytogenetic abnormalities including telomeric associations and MEN1 mutation in a pediatric ependymoma. Cancer Genetics and Cytogenetics, 2002, 138, 107-110.	1.0	14
157	Multifocal intrafollicular granulosa cell tumor of the ovary associated with an unusual germline p53 mutation. Modern Pathology, 2004, 17, 868-873.	2.9	14
158	Determination of CYP2D6 gene copy number by multiplex polymerase chain reaction analysis. Analytical Biochemistry, 2009, 389, 74-76.	1.1	14
159	Adenoma hipofisario asociado a feocromocitoma/paraganglioma: una nueva forma de neoplasia endocrina múltiple. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2016, 63, 506-508.	0.8	14
160	3P association (3PAs): Pituitary adenoma and pheochromocytoma/paraganglioma. A heterogeneous clinical syndrome associated with different gene mutations. European Journal of Internal Medicine, 2019, 69, 14-19.	1.0	14
161	PTEN expression and mutations in TSC1 , TSC2 and MTOR are associated with response to rapalogs in patients with renal cell carcinoma. International Journal of Cancer, 2020, 146, 1435-1444.	2.3	14
162	Analysis of Telomere Maintenance Related Genes Reveals NOP10 as a New Metastatic-Risk Marker in Pheochromocytoma/Paraganglioma. Cancers, 2021, 13, 4758.	1.7	14

#	Article	IF	CITATIONS
163	Quantification of Unmethylated Alu (QUAlu): a tool to assess global hypomethylation in routine clinical samples. Oncotarget, 2016, 7, 10536-10546.	0.8	14
164	Advanced sporadic renal epithelioid angiomyolipoma: case report of an extraordinary response to sirolimus linked to TSC2 mutation. BMC Cancer, 2018, 18, 561.	1.1	13
165	Succinate Dehydrogenase D Variants Do Not Constitute a Risk Factor for Developing C Cell Hyperplasia or Sporadic Medullary Thyroid Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 2127-2130.	1.8	12
166	Germline mutations in the new E1' cryptic exon of the <i>VHL</i> gene in patients with tumours of von Hippel-Lindau disease spectrum or with paraganglioma. Journal of Medical Genetics, 2020, 57, 752-759.	1.5	12
167	Head/neck paragangliomas: focus on tumor location, mutational status and plasma methoxytyramine. Endocrine-Related Cancer, 2022, 29, 213-224.	1.6	12
168	Targeting pheochromocytoma/paraganglioma with polyamine inhibitors. Metabolism: Clinical and Experimental, 2020, 110, 154297.	1.5	11
169	Missed clinical clues in patients with pheochromocytoma/paraganglioma discovered by imaging. Endocrine Connections, 2018, 7, 1168-1177.	0.8	11
170	A Multiparametric Study of Malignant Lymphoma of Mucosa Associated Lymphoid Tissue (Malt). Leukemia and Lymphoma, 1992, 8, 87-96.	0.6	10
171	Concurrence of Germline Mutations in the APC and PTEN Genes in a Colonic Polyposis Family Member. Journal of Clinical Oncology, 2004, 22, 2252-2253.	0.8	10
172	The mTORC1 Complex Is Significantly Overactivated in <i>SDHX</i> -Mutated Paragangliomas. Neuroendocrinology, 2017, 105, 384-393.	1.2	10
173	Dermal Hyperneury and Multiple Sclerotic Fibromas in Multiple Endocrine Neoplasia Type 2A Syndrome. JAMA Dermatology, 2017, 153, 1298.	2.0	10
174	Hypermethylation of P16ink4a and P15ink4b genes as a marker of disease in the follow-up of non-Hodgkin's lymphomas. British Journal of Haematology, 2000, 109, 97-103.	1.2	9
175	A rapid and easy method for multiple endocrine neoplasia type 1 mutation detection using conformation-sensitive gel electrophoresis. Journal of Human Genetics, 2002, 47, 190-195.	1.1	9
176	An Epistatic Interaction between the PAX8 and STK17B Genes in Papillary Thyroid Cancer Susceptibility. PLoS ONE, 2013, 8, e74765.	1.1	9
177	Prevalence of pathogenic germline variants in patients with metastatic renal cell carcinoma. Genetics in Medicine, 2021, 23, 698-704.	1.1	9
178	Neurofibromatosis 1, and Not TP53, Seems to Be the Main Target of Chromosome 17 Deletions in De Novo Acute Myeloid Leukemia. Journal of Clinical Oncology, 2007, 25, 1151-1152.	0.8	8
179	Characterization of neuroendocrine tumors in heterozygous mutant MENX rats: a novel model of invasive medullary thyroid carcinoma. Endocrine-Related Cancer, 2018, 25, 145-162.	1.6	8
180	Hereditary Leiomyomatosis and Renal Cell Cancer Syndrome in Spain: Clinical and Genetic Characterization. Cancers, 2020, 12, 3277.	1.7	8

#	Article	IF	CITATIONS
181	The 12 base pair duplication/insertion alteration could be a regulatory mutation Journal of Medical Genetics, 1997, 34, 592-593.	1.5	7
182	Mutation analysis of the BRCA2 gene in breast/ovarian cancer Spanish families: identification of two new mutations. Cancer Letters, 1997, 121, 115-118.	3.2	7
183	Sonographic, Cytogenetic and DNA Analysis in Four 69,XXX Fetuses Diagnosed in the Second Trimester. Fetal Diagnosis and Therapy, 2000, 15, 97-101.	0.6	7
184	Simultaneous <scp>KIT</scp> mutation and succinate dehydrogenase (<scp>SDH</scp>) deficiency in a patient with a gastrointestinal stromal tumour and Carney‣tratakis syndrome: a case report. Histopathology, 2014, 65, 712-717.	1.6	7
185	Documento de consenso sobre la implementación de la secuenciación masiva de nueva generación en el diagnóstico genético de la predisposición hereditaria al cáncer. Medicina ClÃnica, 2018, 151, 80.e1-80.e10.	0.3	7
186	Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors. Frontiers in Endocrinology, 2021, 12, 722656.	1.5	7
187	Pituitary adenoma associated with pheochromocytoma/paraganglioma: A new form of multiple endocrine neoplasia. EndocrinologÃa Y Nutrición (English Edition), 2016, 63, 506-508.	0.5	6
188	Targeting Cyclooxygenase-2 in Pheochromocytoma and Paraganglioma: Focus on Genetic Background. Cancers, 2019, 11, 743.	1.7	6
189	PrimPol: A Breakthrough among DNA Replication Enzymes and a Potential New Target for Cancer Therapy. Biomolecules, 2022, 12, 248.	1.8	6
190	Homozygous <i>TMEM127</i> mutations in 2 patients with bilateral pheochromocytomas. Clinical Genetics, 2018, 93, 1049-1056.	1.0	5
191	Novel DNMT3A Germline Variant in a Patient with Multiple Paragangliomas and Papillary Thyroid Carcinoma. Cancers, 2020, 12, 3304.	1.7	5
192	CD133 Expression in Medullary Thyroid Cancer Cells Identifies Patients with Poor Prognosis. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 3548-3561.	1.8	5
193	Metastatic pheochromocytoma and paraganglioma: signs and symptoms related to catecholamine secretion. Discover Oncology, 2021, 12, 9.	0.8	5
194	International initiative for a curated <i>SDHB</i> variant database improving the diagnosis of hereditary paraganglioma and pheochromocytoma. Journal of Medical Genetics, 2022, 59, 785-792.	1.5	5
195	Cytogenetic and molecular studies of siblings with ataxia telangiectasia followed for 7 years. Cancer Genetics and Cytogenetics, 1997, 95, 178-182.	1.0	4
196	Cowden disease in a family: A clinical and genetic diagnosis. Journal of the American Academy of Dermatology, 2005, 53, 359-360.	0.6	4
197	Molecular analysis of the BRCA2 gene in 16 breast/ovarian cancer Spanish families. Clinical Genetics, 1998, 54, 142-147.	1.0	4
198	APLP2, RRM2, and PRC1: New Putative Markers for the Differential Diagnosis of Thyroid Follicular Lesions. Thyroid, 2017, 27, 59-66.	2.4	4

0

#	Article	IF	CITATIONS
199	Overexpression of miRâ€483â€5p is confined to metastases and linked to high circulating levels in patients with metastatic pheochromocytoma/paraganglioma. Clinical and Translational Medicine, 2020, 10, e260.	1.7	4
200	Differential sensitivity of constitutive and facultative heterochromatin in orthopteran chromosomes to digestion by DNasel. Genetica, 1990, 81, 229-235.	0.5	3
201	Cloning of human heterohybridoma cell lines using chronic lymphocytic leukemia B cells as a feeder layer. Journal of Immunological Methods, 1991, 145, 193-197.	0.6	3
202	Frequent retinoic acid receptor alpha (Rar-α) gene rearrangements and no point mutations of N-Ras gene in fifteen cases of acute promyelocytic leukemia. American Journal of Hematology, 1994, 46, 161-162.	2.0	3
203	N-ras mutations: Incidence and clinical relevance in myelodysplastic syndrome and acute myelogenous leukemia. American Journal of Hematology, 1995, 50, 315-316.	2.0	3
204	Detection of trisomy 8 using conventional cytogenetic techniques and interphase FISH analysis in 34 myeloid disorders: A comparative study. Cancer Genetics and Cytogenetics, 1997, 94, 103-105.	1.0	3
205	Identification by Comparative Genomic Hybridization of Genetic Changes Involved in Tumoral Progression of a T-Cell Non-Hodgkin Lymphoma. Cancer Genetics and Cytogenetics, 2000, 117, 41-44.	1.0	3
206	Pre- versus post-operative untargeted plasma nuclear magnetic resonance spectroscopy metabolomics of pheochromocytoma and paraganglioma. Endocrine, 2022, 75, 254-265.	1.1	3
207	Rearrangement of one RAR-α gene in an acute promyelocytic leukemia case with t(15;17) and t(6;17) involving chromosomes 17 band q21. Cancer Genetics and Cytogenetics, 1996, 87, 172-175.	1.0	2
208	Chromosomal Mosaicism for Isochromosome 11q Confined to CVS Direct Preparations. Fetal Diagnosis and Therapy, 2001, 16, 95-97.	0.6	2
209	Paraganglioma of the tongue with SDHB gene mutation in a patient with Graves' disease. Clinical Case Reports (discontinued), 2019, 7, 726-730.	0.2	2
210	Somatic RET mutation in a patient with pigmented adrenal pheochromocytoma. Endocrinology, Diabetes and Metabolism Case Reports, 2016, 2016, 150117.	0.2	2
211	Treatment of Pheochromocytoma Cells with Recurrent Cycles of Hypoxia: A New Pseudohypoxic In Vitro Model. Cells, 2022, 11, 560.	1.8	2
212	Immunophenotypic and Gene Rearrangement Analysis in Null- or T-Cell Neoplasias: Study of 16 Cases. Leukemia and Lymphoma, 1991, 4, 381-388.	0.6	1
213	DNA Content in Non-Hodgkin's Lymphoma: Comparison between flow cytometry and cytogenetics in fresh and paraffin-embedded tissue. Acta Oncológica, 1994, 33, 621-625.	0.8	1
214	[OP.3A.06] LONG TERM FOLLOW-UP IN PATIENTS OPERATED ON A PHEOCHROMOCYTOMA OR A PARAGANGLIOMA. Journal of Hypertension, 2016, 34, e28.	0.3	0
215	Molecular Genetics of Pheochromocytoma and Paraganglioma. , 2017, , 15-45.		0

Pheochromocytoma and Paraganglioma., 2021, , 101-137.

#	Article	IF	CITATIONS
217	The recurrent p.(Pro540Ser) MEN1 genetic variant should be considered nonpathogenic: A case report. American Journal of Medical Genetics, Part A, 2021, 185, 3872-3876.	0.7	0
218	Retrospective study assessing the association of single nucleotide polymorphisms in VEGFR3 and on-target toxicity in patients with advanced renal-cell carcinoma (RCC) treated with sunitinib Journal of Clinical Oncology, 2014, 32, 537-537.	0.8	0
219	Characterization of Stem Cell Markers in Pheochromocytomas and Paragangliomas. Experimental and Clinical Endocrinology and Diabetes, 2014, 122, .	0.6	0