Yasunori Hayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6013355/publications.pdf

Version: 2024-02-01

53660 38300 14,856 102 45 95 citations h-index g-index papers 118 118 118 13589 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Molecular mechanism of hippocampal long-term potentiation – Towards multiscale understanding of learning and memory. Neuroscience Research, 2022, 175, 3-15.	1.0	40
2	CaMKII binds both substrates and activators at the active site. Cell Reports, 2022, 40, 111064.	2.9	15
3	Arc selfâ€association and formation of virusâ€like capsids are mediated by an Nâ€terminal helical coil motif. FEBS Journal, 2021, 288, 2930-2955.	2.2	25
4	Liquid-Liquid Phase Separation in Physiology and Pathophysiology of the Nervous System. Journal of Neuroscience, 2021, 41, 834-844.	1.7	39
5	Multiple coordinated cellular dynamics mediate <scp>CA1</scp> map plasticity. Hippocampus, 2021, 31, 235-243.	0.9	8
6	Cover Image, Volume 31, Issue 3. Hippocampus, 2021, 31, C1.	0.9	0
7	CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation. Nature Neuroscience, 2021, 24, 777-785.	7.1	65
8	Modality-Specific Impairment of Hippocampal CA1 Neurons of Alzheimer's Disease Model Mice. Journal of Neuroscience, 2021, 41, 5315-5329.	1.7	11
9	Shootin1a-mediated actin-adhesion coupling generates force to trigger structural plasticity of dendritic spines. Cell Reports, 2021, 35, 109130.	2.9	12
10	Sublayer- and cell-type-specific neurodegenerative transcriptional trajectories in hippocampal sclerosis. Cell Reports, 2021, 35, 109229.	2.9	20
11	Regulation of synaptic nanodomain by liquid–liquid phase separation: A novel mechanism of synaptic plasticity. Current Opinion in Neurobiology, 2021, 69, 84-92.	2.0	14
12	Stepwise synaptic plasticity events drive the early phase of memory consolidation. Science, 2021, 374, 857-863.	6.0	67
13	Shank3 Binds to and Stabilizes the Active Form of Rap1 and HRas GTPases via Its NTD-ANK Tandem with Distinct Mechanisms. Structure, 2020, 28, 290-300.e4.	1.6	18
14	Two Functionally Distinct Serotonergic Projections into Hippocampus. Journal of Neuroscience, 2020, 40, 4936-4944.	1.7	29
15	Distinct Mechanisms of Over-Representation of Landmarks and Rewards in the Hippocampus. Cell Reports, 2020, 32, 107864.	2.9	45
16	The role of CaMKII-Tiam1 complex on learning and memory. Neurobiology of Learning and Memory, 2019, 166, 107070.	1.0	13
17	Orchestrated ensemble activities constitute a hippocampal memory engram. Nature Communications, 2019, 10, 2637.	5.8	109
18	Wide and Deep Imaging of Neuronal Activities by a Wearable NeuroImager Reveals Premotor Activity in the Whole Motor Cortex. Scientific Reports, 2019, 9, 8366.	1.6	5

#	Article	IF	CITATIONS
19	Reciprocal Activation within a Kinase-Effector Complex Underlying Persistence of Structural LTP. Neuron, 2019, 102, 1199-1210.e6.	3.8	82
20	Drebrin-Homer Interaction at An Atomic Scale. Structure, 2019, 27, 3-5.	1.6	31
21	Autophosphorylation of F-actin binding domain of CaMKII \hat{I}^2 is required for fear learning. Neurobiology of Learning and Memory, 2019, 157, 86-95.	1.0	7
22	ERK5 Phosphorylates Kv4.2 and Inhibits Inactivation of the A-Type Current in PC12 Cells. International Journal of Molecular Sciences, 2018, 19, 2008.	1.8	7
23	Structure of monomeric fullâ€length <scp>ARC</scp> sheds light on molecular flexibility, protein interactions, and functional modalities. Journal of Neurochemistry, 2018, 147, 323-343.	2.1	26
24	Photomarking Relocalization Technique for Correlated Two-Photon and Electron Microcopy Imaging of Single Stimulated Synapses. Methods in Molecular Biology, 2017, 1538, 185-214.	0.4	1
25	Building Bridges through Science. Neuron, 2017, 96, 730-735.	3.8	2
26	Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality. ENeuro, 2017, 4, ENEURO.0369-16.2017.	0.9	35
27	In vivo two-photon imaging of striatal neuronal circuits in mice. Neurobiology of Learning and Memory, 2016, 135, 146-151.	1.0	14
28	Interplay of enzymatic and structural functions of Ca <scp>MKII</scp> in longâ€term potentiation. Journal of Neurochemistry, 2016, 139, 959-972.	2.1	36
29	A Temporary Gating of Actin Remodeling during Synaptic Plasticity Consists of the Interplay between the Kinase and Structural Functions of CaMKII. Neuron, 2015, 88, 433.	3.8	0
30	A Naturally Occurring Null Variant of the NMDA Type Glutamate Receptor NR3B Subunit Is a Risk Factor of Schizophrenia. PLoS ONE, 2015, 10, e0116319.	1.1	15
31	Generation and Imaging of Transgenic Mice that Express G-CaMP7 under a Tetracycline Response Element. PLoS ONE, 2015, 10, e0125354.	1.1	26
32	A Top-Down Cortical Circuit for Accurate Sensory Perception. Neuron, 2015, 86, 1304-1316.	3.8	308
33	Stoichiometry and Phosphoisotypes of Hippocampal AMPA-Type Glutamate Receptor Phosphorylation. Neuron, 2015, 85, 60-67.	3.8	55
34	A Temporary Gating of Actin Remodeling during Synaptic Plasticity Consists of the Interplay between the Kinase and Structural Functions of CaMKII. Neuron, 2015, 87, 813-826.	3.8	115
35	Inhibiting the Activity of CA1 Hippocampal Neurons Prevents the Recall of Contextual Fear Memory in Inducible ArchT Transgenic Mice. PLoS ONE, 2015, 10, e0130163.	1.1	11
36	Structural and Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation. Neuron, 2014, 82, 444-459.	3.8	486

3

#	Article	IF	CITATIONS
37	Synapse reorganizationa new partnership revealed. EMBO Journal, 2014, 33, 1292-4.	3.5	O
38	CaMKII: the Swiss army knife of synaptic plasticity. Journal of Physiology, 2014, 592, 4807-4808.	1.3	5
39	Activation of sodiumâ€dependent glutamate transporters regulates the morphological aspects of oligodendrocyte maturation via signaling through calcium/calmodulinâ€dependent kinase IIβ's actinâ€binding/â€stabilizing domain. Glia, 2014, 62, 1543-1558.	2.5	35
40	PIP3 Regulates Spinule Formation in Dendritic Spines during Structural Long-Term Potentiation. Journal of Neuroscience, 2013, 33, 11040-11047.	1.7	45
41	Application of FRET probes in the analysis of neuronal plasticity. Frontiers in Neural Circuits, 2013, 7, 163.	1.4	25
42	Catching the engram: strategies to examine the memory trace. Molecular Brain, 2012, 5, 32.	1.3	37
43	Roles of Neuronal Activity-Induced Gene Products in Hebbian and Homeostatic Synaptic Plasticity, Tagging, and Capture. Advances in Experimental Medicine and Biology, 2012, 970, 335-354.	0.8	11
44	Structural plasticity of dendritic spines. Current Opinion in Neurobiology, 2012, 22, 383-388.	2.0	329
45	A quick and simple FISH protocol with hybridization-sensitive fluorescent linear oligodeoxynucleotide probes. Rna, 2012, 18, 166-175.	1.6	38
46	The Ca ²⁺ and Rho GTPase signaling pathways underlying activityâ€dependent actin remodeling at dendritic spines. Cytoskeleton, 2012, 69, 545-554.	1.0	61
47	Experience-dependent regulation of CaMKII activity within single visual cortex synapses in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21241-21246.	3.3	28
48	Introduction of Green Fluorescent Protein (GFP) into Hippocampal Neurons through Viral Infection. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5406.	0.2	33
49	In vivo two-photon imaging of hippocampal circuit structure and function in mice. Neuroscience Research, 2010, 68, e446.	1.0	O
50	Functional Dynamics of Polo-Like Kinase 1 at the Centrosome. Molecular and Cellular Biology, 2009, 29, 3134-3150.	1.1	82
51	Long-term potentiation: two pathways meet at neurogranin. EMBO Journal, 2009, 28, 2859-2860.	3.5	27
52	The Postsynaptic Density Proteins Homer and Shank Form a Polymeric Network Structure. Cell, 2009, 137, 159-171.	13.5	324
53	The Roles of CaMKII and F-Actin in the Structural Plasticity of Dendritic Spines: A Potential Molecular Identity of a Synaptic Tag?. Physiology, 2009, 24, 357-366.	1.6	140

1TA3-02 The Postsynaptic Density Proteins Homer and Shank Form a Polymeric Network Structure (The) Tj ETQq0 0.0 rgBT /Oyerlock 10

#	Article	IF	Citations
55	Asian promise: the state and future of collaborations in neuroscience. Nature Reviews Neuroscience, 2008, 9, 881-884.	4.9	3
56	Synaptic Accumulation of PSD-95 and Synaptic Function Regulated by Phosphorylation of Serine-295 of PSD-95. Neuron, 2008, 57, 326-327.	3.8	1
57	Genetically encoded probe for fluorescence lifetime imaging of CaMKII activity. Biochemical and Biophysical Research Communications, 2008, 369, 519-525.	1.0	34
58	Motoneuron-specific <i>NR3B</i> gene. Neurology, 2008, 70, 666-676.	1.5	19
59	Transsynaptic Regulation of Presynaptic Release Machinery in Central Synapses by Cell Adhesion Molecules., 2008,, 315-326.		O
60	The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6418-6423.	3.3	266
61	Synaptic Accumulation of PSD-95 and Synaptic Function Regulated by Phosphorylation of Serine-295 of PSD-95. Neuron, 2007, 56, 488-502.	3.8	235
62	Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95–neuroligin. Nature Neuroscience, 2007, 10, 186-195.	7.1	252
63	Genetic ablation of NMDA receptor subunit NR3B in mouse reveals motoneuronal and nonmotoneuronal phenotypes. European Journal of Neuroscience, 2007, 26, 1407-1420.	1.2	40
64	Visualization of F-actin and G-actin equilibrium using fluorescence resonance energy transfer (FRET) in cultured cells and neurons in slices. Nature Protocols, 2006, 1, 911-919.	5.5	17
65	Tetrameric Hub Structure of Postsynaptic Scaffolding Protein Homer. Journal of Neuroscience, 2006, 26, 8492-8501.	1.7	85
66	NR2 to NR3B subunit switchover of NMDA receptors in early postnatal motoneurons. European Journal of Neuroscience, 2005, 21, 1432-1436.	1.2	55
67	Targeting quantum dots to surface proteins in living cells with biotin ligase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7583-7588.	3.3	516
68	Visualization of Synaptic Ca2+ /Calmodulin-Dependent Protein Kinase II Activity in Living Neurons. Journal of Neuroscience, 2005, 25, 3107-3112.	1.7	138
69	QZ1 and QZ2:Â Rapid, Reversible Quinoline-Derivatized Fluoresceins for Sensing Biological Zn(II). Journal of the American Chemical Society, 2005, 127, 16812-16823.	6.6	251
70	Dendritic Spine Geometry: Functional Implication and Regulation. Neuron, 2005, 46, 529-532.	3.8	195
71	Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nature Neuroscience, 2004, 7, 1104-1112.	7.1	728
72	ZP8, a Neuronal Zinc Sensor with Improved Dynamic Range; Imaging Zinc in Hippocampal Slices with Two-Photon Microscopy. Inorganic Chemistry, 2004, 43, 6774-6779.	1.9	117

#	Article	IF	CITATIONS
73	Entrapment of Migrating Hippocampal Neural Cells in Three-Dimensional Peptide Nanofiber Scaffold. Tissue Engineering, 2004, 10, 643-655.	4.9	170
74	The Importance of Dendritic Mitochondria in the Morphogenesis and Plasticity of Spines and Synapses. Cell, 2004, 119, 873-887.	13.5	1,297
75	Quaternary Structure, Protein Dynamics, and Synaptic Function of SAP97 Controlled by L27 Domain Interactions. Neuron, 2004, 44, 453-467.	3.8	225
76	Brain-derived neurotrophic factor signal enhances and maintains the expression of AMPA receptor-associated PDZ proteins in developing cortical neurons. Developmental Biology, 2003, 263, 216-230.	0.9	57
77	Inhibition of Dendritic Spine Morphogenesis and Synaptic Transmission by Activity-Inducible Protein Homer1a. Journal of Neuroscience, 2003, 23, 6327-6337.	1.7	232
78	Dynamism of Postsynaptic Proteins as the Mechanism of Synaptic Plasticity., 2003,, 45-58.		1
79	Subunit-Specific Rules Governing AMPA Receptor Trafficking to Synapses in Hippocampal Pyramidal Neurons. Cell, 2001, 105, 331-343.	13.5	978
80	Motoneuron-Specific Expression of NR3B, a Novel NMDA-Type Glutamate Receptor Subunit That Works in a Dominant-Negative Manner. Journal of Neuroscience, 2001, 21, RC185-RC185.	1.7	206
81	Postnatal synaptic potentiation: Delivery of GluR4-containing AMPA receptors by spontaneous activity. Nature Neuroscience, 2000, 3, 1098-1106.	7.1	371
82	LTP mechanisms: from silence to four-lane traffic. Current Opinion in Neurobiology, 2000, 10, 352-357.	2.0	363
83	Distinct Sites of Opiate Reward and Aversion within the Midbrain Identified Using a Herpes Simplex Virus Vector Expressing GluR1. Journal of Neuroscience, 2000, 20, RC62-RC62.	1.7	92
84	Driving AMPA Receptors into Synapses by LTP and CaMKII: Requirement for GluR1 and PDZ Domain Interaction. Science, 2000, 287, 2262-2267.	6.0	1,376
85	Rapid Spine Delivery and Redistribution of AMPA Receptors After Synaptic NMDA Receptor Activation. Science, 1999, 284, 1811-1816.	6.0	1,186
86	Two-Photon Imaging in Living Brain Slices. Methods, 1999, 18, 231-239.	1.9	150
87	Calcium- and calmodulin-dependent phosphorylation of AMPA type glutamate receptor subunits by endogenous protein kinases in the post-synaptic density. Molecular Brain Research, 1997, 46, 338-342.	2.5	34
88	Structureâ€activity relationships of new agonists and antagonists of different metabotropic glutamate receptor subtypes. British Journal of Pharmacology, 1996, 117, 1493-1503.	2.7	91
89	Analysis of agonist and antagonist activities of phenylglycine derivatives for different cloned metabotropic glutamate receptor subtypes. Journal of Neuroscience, 1994, 14, 3370-3377.	1.7	322
90	Induction of an olfactory memory by the activation of a metabotropic glutamate receptor. Science, 1994, 265, 262-264.	6.0	152

#	Article	IF	CITATIONS
91	Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature, 1993, 366, 687-690.	13.7	354
92	Functional interaction of prostaglandin E receptor EP3 subtype with guanine nucleotide-binding proteins, showing low-affinity ligand binding. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1175, 343-350.	1.9	31
93	Agonist analysis of 2â€(carboxycyclopropyl)glycine isomers for cloned metabotropic glutamate receptor subtypes expressed in Chinese hamster ovary cells. British Journal of Pharmacology, 1992, 107, 539-543.	2.7	184
94	Mouse thromboxane A2 receptor: cDNA cloning, expression and Northern blot analysis. Biochemical and Biophysical Research Communications, 1992, 184, 1197-1203.	1.0	158
95	Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature, 1991, 349, 617-620.	13.7	700
96	Effects of Choline Administration on In Vivo Release and Biosynthesis of Acetylcholine in the Rat Striatum as Studied by In Vivo Brain Microdialysis. Journal of Neurochemistry, 1990, 54, 533-539.	2.1	66
97	Enhancement of In Vivo Tyrosine Hydroxylation in the Rat Adrenal Gland Under Hypoxic Conditions. Journal of Neurochemistry, 1990, 54, 1115-1121.	2.1	25
98	Effects of hypoxia on noradrenaline release and neuronal reuptake in isolated rabbit thoracic aortic strips. Naunyn-Schmiedeberg's Archives of Pharmacology, 1989, 339, 503-508.	1.4	8
99	A nonisotopic method for determination of the in vivo activities of tyrosine hydroxylase in the rat adrenal gland. Analytical Biochemistry, 1988, 168, 176-183.	1.1	14
100	Effects of hypoxia on contractile responses of rabbit aortic strips to transmural electrical stimulation. Naunyn-Schmiedeberg's Archives of Pharmacology, 1988, 338, 275-81.	1.4	9
101	Effects of hypoxia on mechanisms of adrenergic transmission and contraction of rabbit aorta. The Japanese Journal of Pharmacology, 1987, 43, 66.	1.2	O
102	Effects of hypoxia on turnover rates of dopamine, 3,4-dihydroxyphenylacetic acid and 3-methoxytyramine in the rat striatum. The Japanese Journal of Pharmacology, 1987, 43, 261.	1.2	0