Adam F Junka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6013141/publications.pdf

Version: 2024-02-01

377584 445137 1,424 83 21 33 h-index citations g-index papers 92 92 92 1951 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	†Cookies on a tray': Superselective hierarchical microstructured poly(l-lactide) surface as a decoy for cells. Materials Science and Engineering C, 2022, 133, 112648.	3.8	4
2	The In Vitro Ability of Klebsiella pneumoniae to Form Biofilm and the Potential of Various Compounds to Eradicate It from Urinary Catheters. Pathogens, 2022, 11, 42.	1.2	7
3	Biomedical Ti-Nb-Zr Foams Prepared by Means of Thermal Dealloying Process and Electrochemical Modification. Materials, 2022, 15, 2130.	1.3	3
4	Improved quality and functional properties of Ti-6Al-4V ELI alloy for personalized orthopedic implants fabrication with EBM process. Journal of Manufacturing Processes, 2022, 76, 175-194.	2.8	21
5	Bacterial Nanocellulose Fortified with Antimicrobial and Anti-Inflammatory Natural Products from Chelidonium majus Plant Cell Cultures. Materials, 2022, 15, 16.	1.3	6
6	In Vitro Cytotoxicity, Colonisation by Fibroblasts and Antimicrobial Properties of Surgical Meshes Coated with Bacterial Cellulose. International Journal of Molecular Sciences, 2022, 23, 4835.	1.8	7
7	The effects of rotating magnetic field and antiseptic on in vitro pathogenic biofilm and its milieu. Scientific Reports, 2022, 12, .	1.6	9
8	Preparation and Properties of Bulk and Porous Ti-Ta-Ag Biomedical Alloys. Materials, 2022, 15, 4332.	1.3	2
9	Chemical Composition and Antibacterial Activity of Liquid and Volatile Phase of Essential Oils against Planktonic and Biofilm-Forming Cells of Pseudomonas aeruginosa. Molecules, 2022, 27, 4096.	1.7	4
10	The cross-linked bacterial cellulose impregnated with octenidine dihydrochloride-based antiseptic as an antibacterial dressing material for highly-exuding, infected wounds. Microbiological Research, 2022, 263, 127125.	2.5	5
11	Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dressings. Carbohydrate Polymers, 2021, 253, 117247.	5.1	64
12	Bisphosphonates for delivering drugs to bone. British Journal of Pharmacology, 2021, 178, 2008-2025.	2.7	21
13	Human Saliva-Mediated Hydrolysis of Eugenyl- \hat{l}^2 -D-Glucoside and Fluorescein-di- \hat{l}^2 -D-Glucoside in In Vivo and In Vitro Models. Biomolecules, 2021, 11, 172.	1.8	3
14	In Vitro Efficacy of Bacterial Cellulose Dressings Chemisorbed with Antiseptics against Biofilm Formed by Pathogens Isolated from Chronic Wounds. International Journal of Molecular Sciences, 2021, 22, 3996.	1.8	28
15	The Co-Culture of Staphylococcal Biofilm and Fibroblast Cell Line: The Correlation of Biological Phenomena with Metabolic NMR1 Footprint. International Journal of Molecular Sciences, 2021, 22, 5826.	1.8	7
16	Bisphosphonates in dentistry: Historical perspectives, adverse effects, and novel applications. Bone, 2021, 147, 115933.	1.4	10
17	3D Printing of Thermoresponsive Hydrogel Laden with an Antimicrobial Agent towards Wound Healing Applications. Bioengineering, 2021, 8, 79.	1.6	42
18	Antimicrobial and Antioxidative Activity of Newly Synthesized Peptides Absorbed into Bacterial Cellulose Carrier against Acne vulgaris. International Journal of Molecular Sciences, 2021, 22, 7466.	1.8	10

#	Article	IF	Citations
19	Antibiofilm and Antimicrobial-Enhancing Activity of Chelidonium majus and Corydalis cheilanthifolia Extracts against Multidrug-Resistant Helicobacter pylori. Pathogens, 2021, 10, 1033.	1.2	16
20	Screening Papaveraceae as Novel Antibiofilm Natural-Based Agents. Molecules, 2021, 26, 4778.	1.7	7
21	The Antimicrobial and Antibiofilm In Vitro Activity of Liquid and Vapour Phases of Selected Essential Oils against Staphylococcus aureus. Pathogens, 2021, 10, 1207.	1.2	15
22	The Phylogenetic Structure of Reptile, Avian and Uropathogenic Escherichia coli with Particular Reference to Extraintestinal Pathotypes. International Journal of Molecular Sciences, 2021, 22, 1192.	1.8	3
23	In Vitro Evaluation of Polihexanide, Octenidine and NaClO/HClO-Based Antiseptics against Biofilm Formed by Wound Pathogens. Membranes, 2021, 11, 62.	1.4	28
24	Potato Juice, a Starch Industry Waste, as a Cost-Effective Medium for the Biosynthesis of Bacterial Cellulose. International Journal of Molecular Sciences, 2021, 22, 10807.	1.8	15
25	The High Impact of Staphylococcus aureus Biofilm Culture Medium on In Vitro Outcomes of Antimicrobial Activity of Wound Antiseptics and Antibiotic. Pathogens, 2021, 10, 1385.	1.2	15
26	The Effect of Rotating Magnetic Field on Susceptibility Profile of Methicillin-Resistant Staphylococcus aureus Strains Exposed to Activity of Different Groups of Antibiotics. International Journal of Molecular Sciences, 2021, 22, 11551.	1.8	5
27	The Impact of Intraspecies Variability on Growth Rate and Cellular Metabolic Activity of Bacteria Exposed to Rotating Magnetic Field. Pathogens, 2021, 10, 1427.	1.2	8
28	Preparation of Komagataeibacter xylinus Inoculum for Bacterial Cellulose Biosynthesis Using Magnetically Assisted External-Loop Airlift Bioreactor. Polymers, 2021, 13, 3950.	2.0	11
29	Rotating Magnetic Field Increases \hat{l}^2 -Lactam Antibiotic Susceptibility of Methicillin-Resistant Staphylococcus aureus Strains. International Journal of Molecular Sciences, 2021, 22, 12397.	1.8	5
30	Modifications of bacterial cellulose in wound care. Polimery W Medycynie, 2021, 51, 77-84.	0.6	4
31	Biological evaluation of selective laser melted magnesium alloy powder. Acta of Bioengineering and Biomechanics, 2021, 23, 121-133.	0.2	0
32	Influence of the different composites (PLA/PLLA/HA/ \hat{I}^2 -TCP) contents manufactured with the use of additive laser technology on the biocompatibility. Acta of Bioengineering and Biomechanics, 2021, 23, 169-180.	0.2	0
33	Material Extrusion-Based Additive Manufacturing of Poly(Lactic Acid) Antibacterial Filaments—A Case Study of Antimicrobial Properties. Polymers, 2021, 13, 4337.	2.0	4
34	Application of bacterial cellulose experimental dressings saturated with gentamycin for management of bone biofilm <i>in vitro</i> and <i>ex vivo</i> . Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 30-37.	1.6	27
35	Evaluation of 1,2-Benzothiazine 1,1-Dioxide Derivatives In Vitro Activity towards Clinical-Relevant Microorganisms and Fibroblasts. Molecules, 2020, 25, 3503.	1.7	10
36	The Novel Quantitative Assay for Measuring the Antibiofilm Activity of Volatile Compounds (AntiBioVol). Applied Sciences (Switzerland), 2020, 10, 7343.	1.3	6

#	Article	IF	CITATIONS
37	Phytochemical Composition and Antimicrobial Activity of Corydalis solida and Pseudofumaria lutea. Molecules, 2020, 25, 3591.	1.7	4
38	Therapeutic index for local infections score (TILI): a new diagnostic tool. Journal of Wound Care, 2020, 29, 720-726.	0.5	8
39	Therapeutic Index for Local Infections score validity: a retrospective European analysis. Journal of Wound Care, 2020, 29, 726-734.	0.5	10
40	Potential of Bacterial Cellulose Chemisorbed with Anti-Metabolites, 3-Bromopyruvate or Sertraline, to Fight against Helicobacter pylori Lawn Biofilm. International Journal of Molecular Sciences, 2020, 21, 9507.	1.8	14
41	Clinical Trials of Probiotic Strains in Selected Disease Entities. International Journal of Microbiology, 2020, 2020, 1-8.	0.9	29
42	Development and Evaluation of a Polyvinylalcohol -Cellulose Derivative-Based Film with Povidone-lodine Predicted for Wound Treatment. Polymers, 2020, 12, 1271.	2.0	12
43	LC-QTOF-MS and 1H NMR Metabolomics Verifies Potential Use of Greater Omentum for Klebsiella pneumoniae Biofilm Eradication in Rats. Pathogens, 2020, 9, 399.	1.2	3
44	Significant enhancement of citric acid production by Yarrowia lipolytica immobilized in bacterial cellulose-based carrier. Journal of Biotechnology, 2020, 321, 13-22.	1.9	13
45	The Impact of EBM-Manufactured Ti6Al4V ELI Alloy Surface Modifications on Cytotoxicity toward Eukaryotic Cells and Microbial Biofilm Formation. Materials, 2020, 13, 2822.	1.3	17
46	Ocena aktywności in vitro maści SutriHeal® Forte 5% względem Staphylococcus aureus i Pseudomonas aeruginosa oraz linii komórkowych odpowiedzialnych za proces gojenia się rany. Forum Leczenia Ran, 2020, 2, 71-80.	0.0	0
47	Wskaźnik terapeutyczny miejscowego zakaÅ⅓4enia rany (TILI) jako przydatne narzÄ™dzie w efektywnej pielęgnacji ran niegojących się dla lekarzy i pielęgniarek podstawowej opieki zdrowotnej, lekarzy rodzinnych i personelu zakÅ,adów opiekuÅ"czo-leczniczych. Forum ZakaÅ⅓eÅ", 2020, 11, 285-295.	0.0	1
48	Functionalized Magnetic Bacterial Cellulose Beads as Carrier for Lecitase® Ultra Immobilization. Applied Biochemistry and Biotechnology, 2019, 187, 176-193.	1.4	12
49	An efficient method of Yarrowia lipolytica immobilization using oil- and emulsion-modified bacterial cellulose carriers. Electronic Journal of Biotechnology, 2019, 41, 30-36.	1.2	6
50	The Activity of Isoquinoline Alkaloids and Extracts from Chelidonium majus against Pathogenic Bacteria and Candida sp Toxins, 2019, 11, 406.	1.5	42
51	Potential of Biocellulose Carrier Impregnated with Essential Oils to Fight Against Biofilms Formed on Hydroxyapatite. Scientific Reports, 2019, 9, 1256.	1.6	24
52	In vitro efficacy of gentamicin released from collagen sponge in eradication of bacterial biofilm preformed on hydroxyapatite surface. PLoS ONE, 2019, 14, e0217769.	1.1	20
53	Metronidazole-Loaded Porous Matrices for Local Periodontitis Treatment: In Vitro Evaluation and In Vivo Pilot Study. Applied Sciences (Switzerland), 2019, 9, 4545.	1.3	12
54	Potential of Novel Bacterial Cellulose Dressings Chemisorbed with Antiseptics for the Treatment of Oral Biofilm Infections. Applied Sciences (Switzerland), 2019, 9, 5321.	1.3	9

#	Article	IF	CITATIONS
55	Immobilization pattern of morphologically different microorganisms on bacterial cellulose membranes. World Journal of Microbiology and Biotechnology, 2019, 35, 11.	1.7	28
56	Bacterial cellulose as a support for yeast immobilization $\hat{a} \in$ Correlation between carrier properties and process efficiency. Journal of Biotechnology, 2019, 291, 1-6.	1.9	15
57	Skutecznoŷć opatrunku UrgoClean® Ag Pad w eradykacji i sekwestracji in vitro drobnoustrojów będącyo czynnikiem etiologicznym zakaÅ⅓eÅ" ran przewlekÅ,ych. Forum ZakaÅ⅓eÅ", 2019, 10, 159-168.	ch _{o.o}	0
58	Postępowanie przeciwbakteryjne (antyseptyka) u pacjentów oparzonych. Chirurgia Plastyczna I Oparzenia / Plastic Surgery & Burns, 2019, 7, 91-100.	0.1	2
59	Gentamycyna w terapii zakażeń i jej miejscowe stosowanie na nośniku kolagenowym a oporność drobnoustrojów. Forum Zakażeń, 2019, 10, 275-286.	0.0	0
60	Modification of Bacterial Cellulose with Quaternary Ammonium Compounds Based on Fatty Acids and Amino Acids and the Effect on Antimicrobial Activity. Biomacromolecules, 2018, 19, 1528-1538.	2.6	52
61	The application of magnetically modified bacterial cellulose for immobilization of laccase. International Journal of Biological Macromolecules, 2018, 108, 462-470.	3.6	52
62	Development and biological evaluation of Ti6Al7Nb scaffold implants coated with gentamycin-saturated bacterial cellulose biomaterial. PLoS ONE, 2018, 13, e0205205.	1.1	28
63	Consensus recommendation: Indications and methods for microbiological wound diagnostics. Wound Medicine, 2018, 23, 53-57.	2.7	1
64	Bacterial cellulose yield increased over 500% by supplementation of medium with vegetable oil. Carbohydrate Polymers, 2018, 199, 294-303.	5.1	39
65	Application of Ti6Al7Nb Alloy for the Manufacture of Biomechanical Functional Structures (BFS) for Custom-Made Bone Implants. Materials, 2018, 11, 971.	1.3	22
66	Greater Celandine's Ups and Downsâ^21 Centuries of Medicinal Uses of Chelidonium majus From the Viewpoint of Today's Pharmacology. Frontiers in Pharmacology, 2018, 9, 299.	1.6	69
67	The influence of antibiotics and dietary components on gut microbiota. Przeglad Gastroenterologiczny, 2018, 13, 85-92.	0.3	79
68	The influence of different composite mixtures (PLA/HA) manufactured with additive laser technology on the ability of S. aureus and P. aeruginosa to form biofilms. Acta of Bioengineering and Biomechanics, 2018, 20, 101-106.	0.2	4
69	Metabolic profiles of exudates from chronic leg ulcerations. Journal of Pharmaceutical and Biomedical Analysis, 2017, 137, 13-22.	1.4	15
70	Design, Synthesis, and Antimicrobial Evaluation of a Novel Bone-Targeting Bisphosphonate-Ciprofloxacin Conjugate for the Treatment of Osteomyelitis Biofilms. Journal of Medicinal Chemistry, 2017, 60, 2326-2343.	2.9	77
71	Metabolomics analysis of fungal biofilm development and of arachidonic acidâ€based quorum sensing mechanism. Journal of Basic Microbiology, 2017, 57, 428-439.	1.8	5
72	Biochemical and cellular properties of <i>Gluconacetobacter xylinus</i> cultures exposed to different modes of rotating magnetic field. Polish Journal of Chemical Technology, 2017, 19, 107-114.	0.3	8

#	Article	IF	CITATION
73	A.D.A.M. test (Antibiofilm Dressing's Activity Measurement) $\hat{a}\in$ " Simple method for evaluating anti-biofilm activity of drug-saturated dressings against wound pathogens. Journal of Microbiological Methods, 2017, 143, 6-12.	0.7	26
74	Correlation between type of alkali rinsing, cytotoxicity of bio-nanocellulose and presence of metabolites within cellulose membranes. Carbohydrate Polymers, 2017, 157, 371-379.	5.1	16
75	Bad to the Bone: On In Vitro and Ex Vivo Microbial Biofilm Ability to Directly Destroy Colonized Bone Surfaces without Participation of Host Immunity or Osteoclastogenesis. PLoS ONE, 2017, 12, e0169565.	1.1	47
76	The chemical digestion of Ti6Al7Nb scaffolds produced by Selective Laser Melting reduces significantly ability of Pseudomonas aeruginosa to form biofilm. Acta of Bioengineering and Biomechanics, 2016, 18, 115-20.	0.2	3
77	A comparison of an antibacterial sandwich dressing vs dressing containing silver. Wound Repair and Regeneration, 2015, 23, 525-530.	1.5	13
78	Microbial Biofilms Are Able to Destroy Hydroxyapatite in the Absence of Host Immunity InÂVitro. Journal of Oral and Maxillofacial Surgery, 2015, 73, 451-464.	0.5	17
79	Bisphosphonates enhance bacterial adhesion and biofilm formation on bone hydroxyapatite. Journal of Cranio-Maxillo-Facial Surgery, 2015, 43, 863-869.	0.7	22
80	Efficacy of antiseptics containing povidoneâ€iodine, octenidine dihydrochloride and ethacridine lactate against biofilm formed by ⟨i⟩Pseudomonas aeruginosa⟨ i⟩ and ⟨i⟩Staphylococcus aureus⟨ i⟩ measured with the novel biofilmâ€oriented antiseptics test. International Wound Journal, 2014, 11, 730-734.	1.3	50
81	The detection and expression of enterotoxinencoding lth gene among Klebsiella spp. isolated from diarrhoea. Open Life Sciences, 2013, 8, 121-129.	0.6	0
82	Pamidronate Enhances Bacterial Adhesion to Bone Hydroxyapatite. Another Puzzle in the Pathology of Bisphosphonate-Related Osteonecrosis of the Jaw?. Journal of Oral and Maxillofacial Surgery, 2013, 71, 1010-1016.	0.5	44
83	The ability of S.aureus to form biofilm on the Ti-6Al-7Nb scaffolds produced by Selective Laser Melting and subjected to the different types of surface modifications. Acta of Bioengineering and Biomechanics, 2013, 15, 69-76.	0.2	16