

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6013114/publications.pdf Version: 2024-02-01

Yi Xi

#	Article	lF	CITATIONS
1	Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Science Advances, 2017, 3, e1700694.	4.7	491
2	Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film. ACS Applied Materials & Interfaces, 2016, 8, 736-744.	4.0	474
3	Multifunctional TENG for Blue Energy Scavenging and Selfâ€Powered Windâ€Speed Sensor. Advanced Energy Materials, 2017, 7, 1602397.	10.2	273
4	Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale, 2015, 7, 1896-1903.	2.8	222
5	Selfâ€Powered Wireless Sensor Node Enabled by a Duckâ€Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy. Advanced Energy Materials, 2017, 7, 1601705.	10.2	198
6	Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. Journal of Materials Chemistry, 2009, 19, 9260.	6.7	181
7	Airflow-Induced Triboelectric Nanogenerator as a Self-Powered Sensor for Detecting Humidity and Airflow Rate. ACS Applied Materials & Interfaces, 2014, 6, 17184-17189.	4.0	176
8	High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy, 2017, 38, 101-108.	8.2	146
9	A nanogenerator for harvesting airflow energy and light energy. Journal of Materials Chemistry A, 2014, 2, 2079-2087.	5.2	126
10	A Triboelectric Generator Based on Checker‣ike Interdigital Electrodes with a Sandwiched PET Thin Film for Harvesting Sliding Energy in All Directions. Advanced Energy Materials, 2015, 5, 1400790.	10.2	116
11	Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator. Nano Research, 2017, 10, 320-330.	5.8	106
12	A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems. Nano Energy, 2019, 56, 300-306.	8.2	96
13	Hybrid nanogenerators based on triboelectrification of a dielectric composite made of lead-free ZnSnO 3 nanocubes. Nano Energy, 2015, 18, 28-36.	8.2	87
14	Selfâ€Powered Electrochemical Synthesis of Polypyrrole from the Pulsed Output of a Triboelectric Nanogenerator as a Sustainable Energy System. Advanced Functional Materials, 2016, 26, 3542-3548.	7.8	87
15	Polydirectional Microvibration Energy Collection for Self-Powered Multifunctional Systems Based on Hybridized Nanogenerators. ACS Nano, 2020, 14, 3328-3336.	7.3	85
16	Enhancing the Output Charge Density of TENG via Building Longitudinal Paths of Electrostatic Charges in the Contacting Layers. ACS Applied Materials & Interfaces, 2018, 10, 2158-2165.	4.0	83
17	Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor. Nano Energy, 2016, 19, 363-372.	8.2	77
18	Rolling friction contact-separation mode hybrid triboelectric nanogenerator for mechanical energy harvesting and self-powered multifunctional sensors. Nano Energy, 2018, 47, 539-546.	8.2	77

Yi Xi

#	Article	IF	CITATIONS
19	Harvesting Multidirectional Breeze Energy and Selfâ€Powered Intelligent Fire Detection Systems Based on Triboelectric Nanogenerator and Fluidâ€Dynamic Modeling. Advanced Functional Materials, 2021, 31, 2106527.	7.8	68
20	Ultra-stability high-voltage triboelectric nanogenerator designed by ternary dielectric triboelectrification with partial soft-contact and non-contact mode. Nano Energy, 2021, 90, 106585.	8.2	65
21	Carbon-modified Na2Ti3O7·2H2O nanobelts as redox active materials for high-performance supercapacitor. Nano Energy, 2016, 28, 115-123.	8.2	51
22	Bioâ€Derived Natural Materials Based Triboelectric Devices for Selfâ€Powered Ubiquitous Wearable and Implantable Intelligent Devices. Advanced Sustainable Systems, 2020, 4, 2000108.	2.7	42
23	Design and engineering of <scp>highâ€performance</scp> triboelectric nanogenerator for ubiquitous unattended devices. EcoMat, 2021, 3, e12093.	6.8	39
24	Ti-Doped Tunnel-Type Na ₄ Mn ₉ O ₁₈ Nanoparticles as Novel Anode Materials for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 28900-28908.	4.0	23
25	Triboelectric and Electromagnetic Hybrid Nanogenerator Based on a Crankshaft Piston System as a Multifunctional Energy Harvesting Device. Advanced Materials Technologies, 2019, 4, 1800278.	3.0	23
26	Enhanced output-power of nanogenerator by modifying PDMS film with lateral ZnO nanotubes and Ag nanowires. RSC Advances, 2015, 5, 32566-32571.	1.7	22
27	Enhancing the performance of NaNbO ₃ triboelectric nanogenerators by dielectric modulation and electronegative modification. Journal Physics D: Applied Physics, 2018, 51, 015303.	1.3	20
28	WGUs sensor based on integrated wind-induced generating units for 360° wind energy harvesting and self-powered wind velocity sensing. RSC Advances, 2017, 7, 23208-23214.	1.7	17
29	<i>In situ</i> growth of MnO@Na ₂ Ti ₆ O ₁₃ heterojunction nanowires for high performance supercapacitors. Nanotechnology, 2019, 30, 335401.	1.3	11
30	Based on the stable tunnel structure of C@K2Ti6O13 hybrid compositions for supercapacitor. Electrochimica Acta, 2017, 252, 498-506.	2.6	7
31	Ag-modified Fe ₂ O ₃ nanoparticles on a carbon cloth as an anode material for high-performance supercapacitors. Nanotechnology, 2020, 31, 125405.	1.3	4
32	Zn induced NiCo composites modified by carbon materials as a battery-type electrode material for high-performance supercapacitors. Nanotechnology, 2021, 32, 495603.	1.3	3