List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6012769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nature Communications, 2021, 12, 1734.	12.8	488
2	Co ₂ P–CoN Double Active Centers Confined in Nâ€Doped Carbon Nanotube: Heterostructural Engineering for Trifunctional Catalysis toward HER, ORR, OER, and Zn–Air Batteries Driven Water Splitting. Advanced Functional Materials, 2018, 28, 1805641.	14.9	443
3	Interface Engineering of Hierarchical Branched Moâ€Doped Ni ₃ S ₂ /Ni <i>_x</i> P <i>_y</i> Hollow Heterostructure Nanorods for Efficient Overall Water Splitting. Advanced Energy Materials, 2020, 10, 1903891.	19.5	443
4	Carbon Nanosheets Containing Discrete Co-N _{<i>x</i>} -B _{<i>y</i>} -C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn–Air Batteries. ACS Nano, 2018, 12, 1894-1901.	14.6	419
5	Sulfuration of an Fe–N–C Catalyst Containing Fe <i>_x</i> C/Fe Species to Enhance the Catalysis of Oxygen Reduction in Acidic Media and for Use in Flexible Zn–Air Batteries. Advanced Materials, 2018, 30, e1804504.	21.0	269
6	2D MOF Nanoflake-Assembled Spherical Microstructures for Enhanced Supercapacitor and Electrocatalysis Performances. Nano-Micro Letters, 2017, 9, 43.	27.0	234
7	Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Applied Catalysis B: Environmental, 2020, 260, 118198.	20.2	216
8	Beyond Yolk–Shell Nanoparticles: Fe ₃ O ₄ @Fe ₃ C Core@Shell Nanoparticles as Yolks and Carbon Nanospindles as Shells for Efficient Lithium Ion Storage. ACS Nano, 2015, 9, 3369-3376.	14.6	207
9	Adsorption of methylene blue onto poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) nanotubes: Kinetics, isotherm and thermodynamics analysis. Journal of Hazardous Materials, 2014, 273, 263-271.	12.4	148
10	Facilely constructing 3D porous NiCo ₂ S ₄ nanonetworks for high-performance supercapacitors. New Journal of Chemistry, 2014, 38, 4045.	2.8	140
11	Defective N/Sâ€Codoped 3D Cheeseâ€Like Porous Carbon Nanomaterial toward Efficient Oxygen Reduction and Zn–Air Batteries. Small, 2018, 14, e1800563.	10.0	140
12	Preparation of Graphene Oxide/Polyaniline Nanocomposite with Assistance of Supercritical Carbon Dioxide for Supercapacitor Electrodes. Industrial & Engineering Chemistry Research, 2012, 51, 14390-14398.	3.7	133
13	Molecular Evidence for Metallic Cobalt Boosting CO ₂ Electroreduction on Pyridinic Nitrogen. Angewandte Chemie - International Edition, 2020, 59, 4914-4919.	13.8	126
14	Defect Engineering on Carbon-Based Catalysts for Electrocatalytic CO2 Reduction. Nano-Micro Letters, 2021, 13, 5.	27.0	118
15	Fabrication of Twoâ€Dimensional Lateral Heterostructures of WS ₂ /WO ₃ â‹H ₂ 0 Through Selective Oxidation of Monolayer WS ₂ . Angewandte Chemie - International Edition, 2015, 54, 15226-15230.	13.8	109
16	Nitrogen-Doped Hierarchical Porous Carbon Nanowhisker Ensembles on Carbon Nanofiber for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2014, 2, 1525-1533.	6.7	99
17	N,P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO ₂ RR, ORR and Zn-air battery. Journal of Materials Chemistry A, 2019, 7, 15271-15277.	10.3	99
18	Phosphorus-Driven Electron Delocalization on Edge-Type FeN ₄ Active Sites for Oxygen Reduction in Acid Medium, ACS Catalysis, 2021, 11, 12754-12762.	11.2	98

#	Article	IF	CITATIONS
19	Molecularly Engineered Strong Metal Oxide–Support Interaction Enables Highly Efficient and Stable CO ₂ Electroreduction. ACS Catalysis, 2020, 10, 13227-13235.	11.2	94
20	Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery. Rare Metals, 2020, 39, 815-823.	7.1	94
21	N-doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors. Chemical Communications, 2014, 50, 12091-12094.	4.1	90
22	Atomic-scaled cobalt encapsulated in P,N-doped carbon sheaths over carbon nanotubes for enhanced oxygen reduction electrocatalysis under acidic and alkaline media. Chemical Communications, 2017, 53, 9862-9865.	4.1	87
23	Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol. Journal of Materials Science, 2014, 49, 5056-5065.	3.7	85
24	Cobalt-Carbon Core-Shell Nanoparticles Aligned on Wrinkle of N-Doped Carbon Nanosheets with Pt-Like Activity for Oxygen Reduction. Small, 2016, 12, 2839-2845.	10.0	83
25	CoS ₂ nanodots trapped within graphitic structured N-doped carbon spheres with efficient performances for lithium storage. Journal of Materials Chemistry A, 2018, 6, 7148-7154.	10.3	82
26	2D Thin Nanoflakes Assembled on Mesoporous Carbon Nanorods for Enhancing Electrocatalysis and for Improving Asymmetric Supercapacitors. Advanced Functional Materials, 2016, 26, 7766-7774.	14.9	75
27	Rational inert-basal-plane activating design of ultrathin 1T′ phase MoS ₂ with a MoO ₃ heterostructure for enhancing hydrogen evolution performances. Nanoscale, 2018, 10, 16531-16538.	5.6	75
28	Recent Progress on Two-Dimensional Nanoflake Ensembles for Energy Storage Applications. Nano-Micro Letters, 2018, 10, 66.	27.0	71
29	Boron-rich environment boosting ruthenium boride on B, N doped carbon outperforms platinum for hydrogen evolution reaction in a universal pH range. Nano Energy, 2020, 75, 104881.	16.0	71
30	Boosting Nitrogen Reduction to Ammonia on FeN ₄ Sites by Atomic Spin Regulation. Advanced Science, 2021, 8, e2102915.	11.2	64
31	Regulating electronic structure of <scp>twoâ€dimensional</scp> porous Ni/ <scp>Ni₃N</scp> nanosheets architecture by Co atomic incorporation boosts alkaline water splitting. InformaÄnÃ-Materiály, 2022, 4, .	17.3	63
32	Rational confinement engineering of <scp>MOF</scp> â€derived carbonâ€based electrocatalysts toward <scp>CO₂</scp> reduction and <scp>O₂</scp> reduction reactions. InformaÄnÃ-Materiály, 2022, 4, .	17.3	58
33	One-Step Carbonization Synthesis of Hollow Carbon Nanococoons with Multimodal Pores and Their Enhanced Electrochemical Performance for Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 2192-2198.	8.0	57
34	Carbon nanotube-induced phase and stability engineering: a strained cobalt-doped WSe ₂ /MWNT heterostructure for enhanced hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 4793-4800.	10.3	56
35	Fabrication of PVA/graphene oxide/TiO2 composite nanofibers through electrospinning and interface sol–gel reaction: Effect of graphene oxide on PVA nanofibers and growth of TiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 318-325.	4.7	55
36	Atomic Level Dispersed Metal–Nitrogen–Carbon Catalyst toward Oxygen Reduction Reaction: Synthesis Strategies and Chemical Environmental Regulation. Energy and Environmental Materials, 2021, 4, 5-18.	12.8	55

#	Article	IF	CITATIONS
37	Building a lateral/vertical 1T-2H MoS ₂ /Au heterostructure for enhanced photoelectrocatalysis and surface enhanced Raman scattering. Journal of Materials Chemistry A, 2019, 7, 19922-19928.	10.3	47
38	Confining Pd Nanoparticles and Atomically Dispersed Pd into Defective MoO ₃ Nanosheet for Enhancing Electro- and Photocatalytic Hydrogen Evolution Performances. ACS Applied Materials & Interfaces, 2019, 11, 27798-27804.	8.0	47
39	Highâ€Efficiency Encapsulation of Pt Nanoparticles into the Channel of Carbon Nanotubes as an Enhanced Electrocatalyst for Methanol Oxidation. Chemistry - A European Journal, 2013, 19, 16087-16092.	3.3	45
40	A Solventâ€Polarityâ€Induced Interface Selfâ€Assembly Strategy towards Mesoporous Triazineâ€Based Carbon Materials. Angewandte Chemie - International Edition, 2021, 60, 24299-24305.	13.8	35
41	Boronâ€Tethering and Regulative Electronic States Around Iridium Species for Hydrogen Evolution. Advanced Functional Materials, 2022, 32, .	14.9	35
42	Evolution of a solid electrolyte interphase enabled by FeN _{<i>X</i>} /C catalysts for sodium-ion storage. Energy and Environmental Science, 2022, 15, 771-779.	30.8	34
43	Removal of Rhodamine B, a Cationic Dye From Aqueous Solution Using Poly(cyclotriphosphazene-co-4,4â€2-sulfonyldiphenol) Nanotubes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 105-113.	2.2	33
44	Facile Fabrication of Pt Nanoparticles on 1-Pyrenamine Functionalized Graphene Nanosheets for Methanol Electrooxidation. ACS Sustainable Chemistry and Engineering, 2013, 1, 527-533.	6.7	32
45	Au nanoparticle decorated N-containing polymer spheres: additive-free synthesis and remarkable catalytic behavior for reduction of 4-nitrophenol. Journal of Materials Science, 2015, 50, 1323-1332.	3.7	32
46	A dual templating route to three-dimensionally ordered mesoporous carbon nanonetworks: tuning the mesopore type for electrochemical performance optimization. Journal of Materials Chemistry A, 2015, 3, 18867-18873.	10.3	31
47	Molecular Evidence for Metallic Cobalt Boosting CO ₂ Electroreduction on Pyridinic Nitrogen. Angewandte Chemie, 2020, 132, 4944-4949.	2.0	29
48	Polysulfides shuttling remedies by interface-catalytic effect of Mn3O4-MnPx heterostructure. Energy Storage Materials, 2021, 36, 496-503.	18.0	28
49	Concave Pt–Zn Nanocubes with Highâ€Index Faceted Pt Skin as Highly Efficient Oxygen Reduction Catalyst. Advanced Science, 2022, 9, e2200147.	11.2	25
50	NiCo-embedded in hierarchically structured N-doped carbon nanoplates for the efficient electrochemical determination of ascorbic acid, dopamine, and uric acid. RSC Advances, 2015, 5, 65532-65539.	3.6	21
51	Facile fabrication of N-doped hierarchical porous carbon@CNT coaxial nanocables with high performance for energy storage and conversion. RSC Advances, 2015, 5, 96580-96586.	3.6	18
52	Inactivating SARS-CoV-2 by electrochemical oxidation. Science Bulletin, 2021, 66, 720-726.	9.0	18
53	Regulating surface In–O in In@InO core-shell nanoparticles for boosting electrocatalytic CO2 reduction to formate. Chinese Journal of Catalysis, 2022, 43, 1674-1679.	14.0	17
54	1D Cu(OH)2 nanorod/2D SnO2 nanosheets core/shell structured array: Covering with graphene layer leads to excellent performances on lithium-ion battery. Applied Surface Science, 2018, 440, 91-98.	6.1	16

#	Article	IF	CITATIONS
55	Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. Journal of Materials Chemistry A, 2020, 8, 15358-15372.	10.3	16
56	Rapid removal of Sr2+, Cs+ and UO22+ from solution with surfactant and amino acid modified zeolite Y. Microporous and Mesoporous Materials, 2020, 302, 110244.	4.4	14
57	Probing the active sites of 2D nanosheets with Fe-N-C carbon shell encapsulated FexC/Fe species for boosting sodium-ion storage performances. Nano Research, 2022, 15, 7154-7162.	10.4	14
58	Synergistic effect of mechanical strain and interfacial-chemical interaction for stable 1T-WSe2 by carbon nanotube and cobalt. Applied Surface Science, 2019, 496, 143694.	6.1	13
59	The assembling principle and strategies of high-density atomically dispersed catalysts. Chemical Engineering Journal, 2021, 417, 127917.	12.7	13
60	Interfacial engineering of Ag nanodots/MoSe2 nanoflakes/Cu(OH)2 hybrid-electrode for lithium-ion battery. Journal of Colloid and Interface Science, 2019, 557, 635-643.	9.4	12
61	Facile activation of lithium slag for the hydrothermal synthesis of zeolite A with commercial quality and high removal efficiency for the isotope of radioactive ⁹⁰ Sr. Inorganic Chemistry Frontiers, 2022, 9, 468-477.	6.0	12
62	Rational design of integrated electrodes for advancing high-rate alkaline electrolytic hydrogen production. Journal of Materials Chemistry A, 2022, 10, 12764-12787.	10.3	10
63	Dual tuning of 1 D heteroatoms doped porous carbon nanoarchitectures for supercapacitors: the role of balanced P/N doping and core@shell nano-networks. RSC Advances, 2016, 6, 9180-9185.	3.6	9
64	Layerâ€byâ€Layer Approach to Superhydrophobic Zeolite Antireflective Coatings. Chinese Journal of Chemistry, 2018, 36, 51-54.	4.9	7
65	Synthesis of Pure Silica Zeolites. Chemical Research in Chinese Universities, 2022, 38, 9-17.	2.6	6
66	Effects of various factors on the modification of carbon nanotubes with polyvinyl alcohol in supercritical CO2 and their application in electrospun fibers. Chemical Research in Chinese Universities, 2014, 30, 690-697.	2.6	5
67	A highly durable CoO _x /N-doped graphitized-nano-diamond electrocatalyst for oxygen reduction reaction. Nanotechnology, 2021, 32, 355708.	2.6	5
68	Reducing the dosage of the organic structure-directing agent in the crystallization of pure silica zeolite MFI (silicalite-1) for volatile organic compounds (VOCs) adsorption. Inorganic Chemistry Frontiers, 2021, 8, 3354-3362.	6.0	4
69	A photoaffinity labeling strategy identified EF1A1 as a binding protein of cyclic dinucleotide 2′3′-cGAMP. Cell Chemical Biology, 2022, 29, 133-144.e20.	5.2	4
70	Electron spin modulation engineering in oxygen-involved electrocatalysis. Journal of Physics Condensed Matter, 2022, 34, 364002.	1.8	4
71	Hierarchical Nanohybrids: 2D Thin Nanoflakes Assembled on Mesoporous Carbon Nanorods for Enhancing Electrocatalysis and for Improving Asymmetric Supercapacitors (Adv. Funct. Mater.) Tj ETQq1 1 0.784	31 14. ggBT	/Oserlock 10
72	Mapping Novel Biomarkers of Liver Injury by Tissue Proteomic Analysis. ACS Omega, 2021, 6, 7127-7138.	3.5	2

JIA-NAN ZHANG

#	Article	IF	CITATIONS
73	A Solvent Polarity Induced Interface Selfâ€assembly Strategy towards Mesoporous Triazineâ€based Carbon Materials. Angewandte Chemie, 0, , .	2.0	2
74	Optimizing configuration engineering of edge-hosted Fe-Nx active sites for oxygen reduction reaction. Chem Catalysis, 2021, 1, 1155-1157.	6.1	2
75	Optimizing Atomically Dispersed Metal Electrocatalysts for Hydrogen Evolution: Chemical Coordination Effect and Electronic Metal Support Interaction. Chemistry - an Asian Journal, 2022, , .	3.3	2
76	Pine needle-like nanocomposite: Supercritical CO2 assisted polythiophene synthesis on carbon nanotubes. Chemical Research in Chinese Universities, 2014, 30, 521-526.	2.6	1
77	Removal of Anionic Dyes from Aqueous Solution with Layered Cationic Aluminum Oxyhydroxide. Chemical Research in Chinese Universities, 2022, 38, 1532-1541.	2.6	1
78	MOF-Derived Materials for Energy Conversion. , 2021, , 165-209.		0