
Qiming Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6012376/publications.pdf Version: 2024-02-01

OIMING PENG

#	Article	IF	CITATIONS
1	Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562, 249-253.	27.8	1,555
2	Employing â^¼100% Excitons in OLEDs by Utilizing a Fluorescent Molecule with Hybridized Local and Charge‶ransfer Excited State. Advanced Functional Materials, 2014, 24, 1609-1614.	14.9	527
3	Achieving a Significantly Increased Efficiency in Nondoped Pure Blue Fluorescent OLED: A Quasiâ€Equivalent Hybridized Excited State. Advanced Functional Materials, 2015, 25, 1755-1762.	14.9	381
4	Organic Lightâ€Emitting Diodes Using a Neutral Ï€â€Radical as Emitter: The Emission from a Doublet. Angewandte Chemie - International Edition, 2015, 54, 7091-7095.	13.8	312
5	Efficient Deep Blue Electroluminescence with an External Quantum Efficiency of 6.8% and CIE _{<i>y</i>} < 0.08 Based on a Phenanthroimidazole–Sulfone Hybrid Donor–Acceptor Molecule. Chemistry of Materials, 2015, 27, 7050-7057.	6.7	239
6	Efficient Nondoped Blue Fluorescent Organic Lightâ€Emitting Diodes (OLEDs) with a High External Quantum Efficiency of 9.4% @ 1000 cd m ^{â^'2} Based on Phenanthroimidazoleâ^'Anthracene Derivative. Advanced Functional Materials, 2018, 28, 1705813.	14.9	193
7	High stability and luminescence efficiency in donor–acceptor neutral radicals not following the Aufbau principle. Nature Materials, 2019, 18, 977-984.	27.5	181
8	Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes. Nature Communications, 2021, 12, 5081.	12.8	178
9	Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes. Nature Materials, 2020, 19, 1224-1229.	27.5	159
10	Triplet–Polaronâ€Interactionâ€Induced Upconversion from Triplet to Singlet: a Possible Way to Obtain Highly Efficient OLEDs. Advanced Materials, 2016, 28, 4740-4746.	21.0	140
11	Efficient Triplet Application in Exciplex Delayed-Fluorescence OLEDs Using a Reverse Intersystem Crossing Mechanism Based on a l" <i>E</i> _{S–T} of around Zero. ACS Applied Materials & Interfaces, 2014, 6, 11907-11914.	8.0	125
12	Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy, 2018, 50, 615-622.	16.0	103
13	Lending Triarylphosphine Oxide to Phenanthroline: a Facile Approach to Highâ€Performance Organic Smallâ€Molecule Cathode Interfacial Material for Organic Photovoltaics utilizing Airâ€Stable Cathodes. Advanced Functional Materials, 2014, 24, 6540-6547.	14.9	96
14	Microcavity top-emission perovskite light-emitting diodes. Light: Science and Applications, 2020, 9, 89.	16.6	96
15	Evidence of the Reverse Intersystem Crossing in Intraâ€Molecular Chargeâ€Transfer Fluorescenceâ€Based Organic Lightâ€Emitting Devices Through Magnetoâ€Electroluminescence Measurements. Advanced Optical Materials, 2013, 1, 362-366.	7.3	84
16	Organic Lightâ€Emitting Diodes Using a Neutral Ï€â€Radical as Emitter: The Emission from a Doublet. Angewandte Chemie, 2015, 127, 7197-7201.	2.0	71
17	Magnetoâ€Electroluminescence as a Tool to Discern the Origin of Delayed Fluorescence: Reverse Intersystem Crossing or Triplet–Triplet Annihilation?. Advanced Optical Materials, 2014, 2, 142-148.	7.3	70
18	Defect Passivation for Red Perovskite Light-Emitting Diodes with Improved Brightness and Stability. Journal of Physical Chemistry Letters, 2019, 10, 380-385.	4.6	55

QIMING PENG

#	Article	IF	CITATIONS
19	A transient-electroluminescence study on perovskite light-emitting diodes. Applied Physics Letters, 2019, 115, .	3.3	51
20	Delayed Fluorescence in a Solution-Processable Pure Red Molecular Organic Emitter Based on Dithienylbenzothiadiazole: A Joint Optical, Electroluminescence, and Magnetoelectroluminescence Study. ACS Applied Materials & Interfaces, 2015, 7, 2972-2978.	8.0	49
21	Asymmetrically twisted anthracene derivatives as highly efficient deep-blue emitters for organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 9942-9947.	5.5	44
22	Multicarbazolyl substituted TTM radicals: red-shift of fluorescence emission with enhanced luminescence efficiency. Materials Chemistry Frontiers, 2017, 1, 2132-2135.	5.9	41
23	Identifying the efficient inter-conversion between singlet and triplet charge-transfer states by magneto-electroluminescence study. Applied Physics Letters, 2013, 102, .	3.3	38
24	High-color-purity and efficient solution-processable blue phosphorescent light-emitting diodes with Pt(<scp>ii</scp>) complexes featuring ³ ππ* transitions. Materials Chemistry Frontiers, 2019, 3, 2448-2454.	5.9	36
25	A radical polymer with efficient deep-red luminescence in the condensed state. Materials Horizons, 2019, 6, 1265-1270.	12.2	36
26	Studying the influence of triplet deactivation on the singlet–triplet inter-conversion in intra-molecular charge-transfer fluorescence-based OLEDs by magneto-electroluminescence. Journal of Materials Chemistry C, 2014, 2, 6264-6268.	5.5	31
27	Surfaceâ€Plasmonâ€Enhanced Perovskite Lightâ€Emitting Diodes. Small, 2020, 16, e2001861.	10.0	30
28	Efficient deep blue fluorescent OLEDs with ultra-low efficiency roll-off based on 4H-1,2,4-triazole cored D-A and D-A-D type emitters. Dyes and Pigments, 2018, 153, 10-17.	3.7	27
29	Benzobisoxazole-based electron transporting materials with high T _g and ambipolar property: high efficiency deep-red phosphorescent OLEDs. Journal of Materials Chemistry C, 2015, 3, 7589-7596.	5.5	25
30	Rational utilization of intramolecular and intermolecular hydrogen bonds to achieve desirable electron transporting materials with high mobility and high triplet energy. Journal of Materials Chemistry C, 2016, 4, 1482-1489.	5.5	23
31	Simultaneous harvesting of triplet excitons in OLEDs by both guest and host materials with an intramolecular charge-transfer feature via triplet–triplet annihilation. Journal of Materials Chemistry C, 2015, 3, 6970-6978.	5.5	20
32	The charge-trapping and triplet-triplet annihilation processes in organic light-emitting diodes: A duty cycle dependence study on magneto-electroluminescence. Applied Physics Letters, 2013, 102, .	3.3	17
33	Investigation of the magnetic field effects on electron mobility in tri-(8-hydroxyquinoline)-aluminum based light-emitting devices. Applied Physics Letters, 2011, 99, 033509.	3.3	16
34	Perovskite Lightâ€Emitting Diodes with Near Unit Internal Quantum Efficiency at Low Temperatures. Advanced Materials, 2021, 33, e2006302.	21.0	16
35	Magnetic field effects on electroluminescence emanated simultaneously from blue fluorescent and red phosphorescent emissive layers of an organic light-emitting diode. Organic Electronics, 2012, 13, 3040-3044.	2.6	15
36	Direct evidence for the electron–hole pair mechanism by studying the organic magneto-electroluminescence based on charge-transfer states. Organic Electronics, 2012, 13, 1774-1778.	2.6	14

QIMING PENG

#	ARTICLE	IF	CITATIONS
37	Investigation of energy transfer and charge trapping in dye-doped organic light-emitting diodes by magneto-electroluminescence measurement. Applied Physics Letters, 2013, 102, 193304.	3.3	14
38	Plasmon-mediated photochemical transformation of inorganic nanocrystals. Applied Materials Today, 2021, 24, 101125.	4.3	14
39	Time-resolved spin-dependent processes in magnetic field effects in organic semiconductors. Journal of Applied Physics, 2012, 112, 114512.	2.5	12
40	Effect of alkyl chain length of the ammonium groups in SEPC-CIL on the performance of polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 15294-15301.	10.3	11
41	Molecular Cocatalyst-Induced Enhancement of the Plasmon-Mediated Coupling of <i>p</i> -Nitrothiophenols at the Silver Nanoparticle–Graphene Oxide Interface. ACS Applied Nano Materials, 2021, 4, 10976-10984.	5.0	10
42	Experimental investigation on the origin of magneto-conductance and magneto-electroluminescence in organic light emitting devices. Synthetic Metals, 2013, 173, 31-34.	3.9	9
43	Molecularly Controlled Quantum Well Width Distribution and Optoelectronic Properties in Quasi-2D Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 4098-4103.	4.6	8
44	Phenothiazinen-Dimesitylarylborane-Based Thermally Activated Delayed Fluorescence: High-Performance Non-doped OLEDs With Reduced Efficiency Roll-Off at High Luminescence. Frontiers in Chemistry, 2019, 7, 373.	3.6	7
45	Study of the magnetic field effects on carriers' mobility in polymer based light-emitting diodes. Synthetic Metals, 2012, 162, 257-260.	3.9	5
46	High-Brightness Perovskite Microcrystalline Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 2963-2968.	4.6	5
47	Efficient Red Electroluminescence From Phenanthro[9,10â€d]imidazoleâ€Naphtho[2,3â€c][1,2,5]thiadiazole Donorâ€Acceptor Derivatives. Chemistry - an Asian Journal, 2021, 16, 1942-1948.	3.3	4
48	Achieving High Efficiency at High Luminance in Fluorescent Organic Lightâ€Emitting Diodes through Triplet–Triplet Fusion Based on Phenanthroimidazoleâ€Benzothiadiazole Derivatives. Chemistry - A European Journal, 2021, 27, 13828-13839.	3.3	4
49	A Study on the Sign Inversion Behavior of Organic Magnetoresistance. IEEE Electron Device Letters, 2013, 34, 450-452.	3.9	1
50	Magneto-Electroluminescence in Organic Light-Emitting Devices and Its Role in Study of Device Physics. Materials and Energy, 2018, , 285-338.	0.1	1
51	Standardization should come first. Nature Nanotechnology, 2013, 8, 885-886.	31.5	0
52	Innentitelbild: Organic Light-Emitting Diodes Using a Neutral Ï€â€Radical as Emitter: The Emission from a Doublet (Angew. Chem. 24/2015). Angewandte Chemie, 2015, 127, 7048-7048.	2.0	0
53	Exploring Device Physics in OLEDs via Magneto-Electroluminescence Study. , 2022, , 419-448.		0