
Zachary A Bornholdt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6012193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Rearrangement of Ebola Virus VP40 Begets Multiple Functions in the Virus Life Cycle. Cell, 2013, 154, 763-774.	13.5	201
2	lsolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science, 2016, 351, 1078-1083.	6.0	194
3	Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17182-17187.	3.3	173
4	Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection against Ebolaviruses. Cell, 2017, 169, 878-890.e15.	13.5	145
5	X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus. Nature, 2008, 456, 985-988.	13.7	132
6	Mechanism of Human Antibody-Mediated Neutralization of Marburg Virus. Cell, 2015, 160, 893-903.	13.5	130
7	The Ebola Virus Interferon Antagonist VP24 Directly Binds STAT1 and Has a Novel, Pyramidal Fold. PLoS Pathogens, 2012, 8, e1002550.	2.1	128
8	<i>Ebolavirus</i> VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 314-319.	3.3	124
9	Structural Basis for Marburg Virus Neutralization by a Cross-Reactive Human Antibody. Cell, 2015, 160, 904-912.	13.5	110
10	A "Trojan horse―bispecific-antibody strategy for broad protection against ebolaviruses. Science, 2016, 354, 350-354.	6.0	101
11	X-ray structure of influenza virus NS1 effector domain. Nature Structural and Molecular Biology, 2006, 13, 559-560.	3.6	93
12	Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies. MBio, 2016, 7, e02154-15.	1.8	86
13	Development of a Human Antibody Cocktail that Deploys Multiple Functions to Confer Pan-Ebolavirus Protection. Cell Host and Microbe, 2019, 25, 39-48.e5.	5.1	83
14	A Two-Antibody Pan-Ebolavirus Cocktail Confers Broad Therapeutic Protection in Ferrets and Nonhuman Primates. Cell Host and Microbe, 2019, 25, 49-58.e5.	5.1	82
15	Longitudinal dynamics of the human B cell response to the yellow fever 17D vaccine. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6675-6685.	3.3	80
16	The Influenza A Virus Protein NS1 Displays Structural Polymorphism. Journal of Virology, 2014, 88, 4113-4122.	1.5	69
17	Marburg Virus VP35 Can Both Fully Coat the Backbone and Cap the Ends of dsRNA for Interferon Antagonism. PLoS Pathogens, 2012, 8, e1002916.	2.1	68
18	Crystal Structure of the Nipah Virus Phosphoprotein Tetramerization Domain. Journal of Virology, 2014, 88, 758-762.	1.5	63

#	Article	IF	CITATIONS
19	Ebolavirus VP35 Coats the Backbone of Double-Stranded RNA for Interferon Antagonism. Journal of Virology, 2013, 87, 10385-10388.	1.5	44
20	The ebolavirus VP24 interferon antagonist. Virulence, 2012, 3, 440-445.	1.8	41
21	Ebola and Marburg virus matrix layers are locally ordered assemblies of VP40 dimers. ELife, 2020, 9, .	2.8	41
22	Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell, 2021, 184, 3486-3501.e21.	13.5	39
23	Combination therapy protects macaques against advanced Marburg virus disease. Nature Communications, 2021, 12, 1891.	5.8	37
24	Analytical Validation of the ReEBOV Antigen Rapid Test for Point-of-Care Diagnosis of Ebola Virus Infection. Journal of Infectious Diseases, 2016, 214, S210-S217.	1.9	35
25	Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression. Journal of Virology, 2016, 90, 1839-1848.	1.5	33
26	Broadly neutralizing antibody cocktails targeting Nipah virus and Hendra virus fusion glycoproteins. Nature Structural and Molecular Biology, 2021, 28, 426-434.	3.6	33
27	Development of Prototype Filovirus Recombinant Antigen Immunoassays. Journal of Infectious Diseases, 2015, 212, S359-S367.	1.9	30
28	Structure and Characterization of Crimean-Congo Hemorrhagic Fever Virus GP38. Journal of Virology, 2020, 94, .	1.5	28
29	Structural Basis of Pan-Ebolavirus Neutralization by an Antibody Targeting the Glycoprotein Fusion Loop. Cell Reports, 2018, 24, 2723-2732.e4.	2.9	26
30	Crystal Structure of Marburg Virus VP24. Journal of Virology, 2014, 88, 5859-5863.	1.5	24
31	Development of an antibody cocktail for treatment of Sudan virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3768-3778.	3.3	23
32	Combination therapy with remdesivir and monoclonal antibodies protects nonhuman primates against advanced Sudan virus disease. JCI Insight, 2022, 7, .	2.3	18
33	Human antibody recognizing a quaternary epitope in the Puumala virus glycoprotein provides broad protection against orthohantaviruses. Science Translational Medicine, 2022, 14, eabl5399.	5.8	16
34	Structural basis of synergistic neutralization of Crimean-Congo hemorrhagic fever virus by human antibodies. Science, 2022, 375, 104-109.	6.0	15
35	Prior vaccination with rVSV-ZEBOV does not interfere with but improves efficacy of postexposure antibody treatment. Nature Communications, 2020, 11, 3736.	5.8	11
36	Genotype-specific features reduce the susceptibility of South American yellow fever virus strains to vaccine-induced antibodies. Cell Host and Microbe, 2022, 30, 248-259.e6.	5.1	11

#	Article	IF	CITATIONS
37	Reversion of Ebolavirus Disease from a Single Intramuscular Injection of a Pan-Ebolavirus Immunotherapeutic. Pathogens, 2022, 11, 655.	1.2	5
38	Ebola virus vaccination and the longevity of total versus neutralising antibody response—is it enough?. Lancet Infectious Diseases, The, 2018, 18, 699-700.	4.6	4
39	Determining the Patchwork Lattice of Ebola and Marburg Virus Matrix Layers Using Cryo-Electron Tomography. Microscopy and Microanalysis, 2021, 27, 1884-1884.	0.2	Ο