John A Endler

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6012123/john-a-endler-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

154	18,452	54	135
papers	citations	h-index	g-index
163	20,380 ext. citations	5.8	7.18
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
154	Color discrimination thresholds vary throughout color space in a reef fish (Rhinecanthus aculeatus) <i>Journal of Experimental Biology</i> , 2022 ,	3	2
153	Multiple phenotypic traits predict male mating success in a critically endangered frog. <i>Behavioral Ecology and Sociobiology</i> , 2022 , 76, 1	2.5	0
152	The role of boundary length and adjacent patch contrast in guppy mate choice. <i>Behavioral Ecology</i> , 2021 , 32, 30-40	2.3	2
151	Does dietary Etarotene influence ontogenetic colour change in the southern corroboree frog?. <i>Journal of Experimental Biology</i> , 2021 , 224,	3	1
150	Disease influences male advertisement and mating outcomes in a critically endangered amphibian. <i>Animal Behaviour</i> , 2021 , 173, 145-157	2.8	3
149	Eat yourself sexy: how selective macronutrient intake influences the expression of a visual signal in common mynas. <i>Journal of Experimental Biology</i> , 2021 , 224,	3	2
148	Cultural transmission and perception of vessel shapes among Hebron potters. <i>Journal of Anthropological Archaeology</i> , 2021 , 63, 101334	1.9	1
147	Assessing the influence of culture on craft skills: A quantitative study with expert Nepalese potters. <i>PLoS ONE</i> , 2020 , 15, e0239139	3.7	1
146	Traditional craftspeople are not copycats: Potter idiosyncrasies in vessel morphogenesis. <i>PLoS ONE</i> , 2020 , 15, e0239362	3.7	2
145	Combining Evolution and Learning in Computational Ecosystems. <i>Journal of Artificial General Intelligence</i> , 2020 , 11, 1-37	8	
144	Quantitative Colour Pattern Analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. <i>Methods in Ecology and Evolution</i> , 2020 , 11, 316-332	7.7	41
143	Rapid beard darkening predicts contest outcome, not copulation success, in bearded dragon lizards. <i>Animal Behaviour</i> , 2020 , 170, 167-176	2.8	O
142	Does conspicuousness scale linearly with colour distance? A test using reef fish. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2020 , 287, 20201456	4.4	13
141	Niche Construction Affects the Variability and Strength of Natural Selection. <i>American Naturalist</i> , 2020 , 195, 16-30	3.7	18
140	Assessing the influence of culture on craft skills: A quantitative study with expert Nepalese potters 2020 , 15, e0239139		
139	Assessing the influence of culture on craft skills: A quantitative study with expert Nepalese potters 2020 , 15, e0239139		
138	Assessing the influence of culture on craft skills: A quantitative study with expert Nepalese potters 2020 , 15, e0239139		

(2018-2020)

Assessing the influence of culture on craft skills: A quantitative study with expert Nepalese potters **2020**, 15, e0239139

136	A Dynamic Optical Signal in a Nocturnal Moth. <i>Current Biology</i> , 2019 , 29, 2919-2925.e2	6.3	10
135	Success of the receptor noise model in predicting colour discrimination in guppies depends upon the colours tested. <i>Vision Research</i> , 2019 , 159, 86-95	2.1	11
134	How viewing objects with the dorsal or ventral retina affects colour-related behaviour in guppies (Poecilia reticulata). <i>Vision Research</i> , 2019 , 158, 78-89	2.1	2
133	pavo 2: New tools for the spectral and spatial analysis of colour in r. <i>Methods in Ecology and Evolution</i> , 2019 , 10, 1097-1107	7.7	129
132	Colour-based foraging diverges after multiple generations under different light environments. <i>Ethology</i> , 2019 , 125, 212-221	1.7	2
131	Plumage coloration follows Gloger's rule in a ring species. <i>Journal of Biogeography</i> , 2019 , 46, 584-596	4.1	10
130	The relative importance of local and global visual contrast in mate choice. <i>Animal Behaviour</i> , 2019 , 154, 143-159	2.8	6
129	Behavioral, energetic, and color trait integration in male guppies: testing the melanocortin hypothesis. <i>Behavioral Ecology</i> , 2019 , 30, 1539-1547	2.3	8
128	An Ishihara-style test of animal colour vision. <i>Journal of Experimental Biology</i> , 2019 , 222,	3	21
127	Individuals Among the Pots: How Do Traditional Ceramic Shapes Vary Between Potters?. <i>Ecological Psychology</i> , 2018 , 30, 299-313	1.5	5
126	Temperature-induced colour change varies seasonally in bearded dragon lizards. <i>Biological Journal of the Linnean Society</i> , 2018 , 123, 422-430	1.9	12
125	Effects of female preference intensity on the permissiveness of sexual trait polymorphisms. <i>Ecology and Evolution</i> , 2018 , 8, 4518-4524	2.8	1
124	Colour pattern component phenotypic divergence can be predicted by the light environment. Journal of Evolutionary Biology, 2018 , 31, 1459-1476	2.3	4
123	Boundary strength analysis: Combining colour pattern geometry and coloured patch visual properties for use in predicting behaviour and fitness. <i>Methods in Ecology and Evolution</i> , 2018 , 9, 2334-2	2348	17
122	25 Years of sensory drive: the evidence and its watery bias. <i>Environmental Epigenetics</i> , 2018 , 64, 471-48	42.4	48
121	A perspective on sensory drive. <i>Environmental Epigenetics</i> , 2018 , 64, 465-470	2.4	8
120	Toxicity and taste: unequal chemical defences in a mimicry ring. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2018 , 285,	4.4	25

119	Light environment change induces differential expression of guppy opsins in a multi-generational evolution experiment. <i>Evolution; International Journal of Organic Evolution</i> , 2018 , 72, 1656	3.8	10
118	Courtship diverges with foraging behaviour in artificially selected populations. <i>Animal Behaviour</i> , 2018 , 144, 9-15	2.8	2
117	Change in male coloration associated with artificial selection on foraging colour preference. Journal of Evolutionary Biology, 2018 , 31, 1227-1238	2.3	5
116	Deimatism: a neglected component of antipredator defence. <i>Biology Letters</i> , 2017 , 13,	3.6	44
115	Early social experience shapes female mate choice in guppies. <i>Behavioral Ecology</i> , 2017 , 28, 833-843	2.3	12
114	The current and future state of animal coloration research. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2017 , 372,	5.8	59
113	Intraspecific geographic variation in rod and cone visual pigment sensitivity of a parrot, Platycercus elegans. <i>Scientific Reports</i> , 2017 , 7, 41445	4.9	10
112	Geographic divergence and colour change in response to visual backgrounds and illumination intensity in bearded dragons. <i>Journal of Experimental Biology</i> , 2017 , 220, 1048-1055	3	13
111	Neutral and selective drivers of colour evolution in a widespread Australian passerine. <i>Journal of Biogeography</i> , 2017 , 44, 522-536	4.1	18
110	Experimental evidence suggests that specular reflectance and glossy appearance help amplify warning signals. <i>Scientific Reports</i> , 2017 , 7, 257	4.9	15
109	Niche construction, sources of selection and trait coevolution. <i>Interface Focus</i> , 2017 , 7, 20160147	3.9	41
108	Improved color constancy in honey bees enabled by parallel visual projections from dorsal ocelli. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 7713-7718	11.5	8
107	Tool-assisted rhythmic drumming in palm cockatoos shares key elements of human instrumental music. <i>Science Advances</i> , 2017 , 3, e1602399	14.3	26
106	Convergent evolution of sexual deception via chromatic and achromatic contrast rather than colour mimicry. <i>Evolutionary Ecology</i> , 2017 , 31, 205-227	1.8	17
105	Sexual selection predicts brain structure in dragon lizards. <i>Journal of Evolutionary Biology</i> , 2017 , 30, 244	-256	10
104	How do great bowerbirds construct perspective illusions?. Royal Society Open Science, 2017, 4, 160661	3.3	4
103	Colour change on different body regions provides thermal and signalling advantages in bearded dragon lizards. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2016 , 283, 20160626	4.4	39
102	A comparative study of rhodopsin function in the great bowerbird (Ptilonorhynchus nuchalis): Spectral tuning and light-activated kinetics. <i>Protein Science</i> , 2016 , 25, 1308-18	6.3	11

(2013-2016)

101	Color Change for Thermoregulation versus Camouflage in Free-Ranging Lizards. <i>American Naturalist</i> , 2016 , 188, 668-678	3.7	35
100	Male courtship decisions are influenced by light environment and female receptivity. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2016 , 283,	4.4	17
99	The bright incubate at night: sexual dichromatism and adaptive incubation division in an open-nesting shorebird. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2015 , 282, 20143026	4.4	36
98	Artificial selection for food colour preferences. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2015 , 282, 20143108	4.4	19
97	White Sharks Exploit the Sun during Predatory Approaches. American Naturalist, 2015, 185, 562-70	3.7	27
96	Variable environmental effects on a multicomponent sexually selected trait. <i>American Naturalist</i> , 2015 , 185, 452-68	3.7	52
95	Illusions vary because of the types of decorations at bowers, not male skill at arranging them, in great bowerbirds. <i>Animal Behaviour</i> , 2015 , 99, 73-82	2.8	10
94	Writing scientific papers, with special reference to Evolutionary Ecology. <i>Evolutionary Ecology</i> , 2015 , 29, 465-478	1.8	7
93	An integrative framework for the appraisal of coloration in nature. American Naturalist, 2015, 185, 705	-2 <u>4</u> .7	165
92	Paradox lost: variable colour-pattern geometry is associated with differences in movement in aposematic frogs. <i>Biology Letters</i> , 2014 , 10, 20140193	3.6	36
91	Red-green-blue electrogenerated chemiluminescence utilizing a digital camera as detector. <i>Analytical Chemistry</i> , 2014 , 86, 2727-32	7.8	92
90	Peacock spiders. Current Biology, 2014 , 24, R588-90	6.3	19
89	Male sexual behaviour and ethanol consumption from an evolutionary perspective: A comment on "Sexual Deprivation Increases Ethanol Intake in Drosophila". <i>Fly</i> , 2014 , 8, 234-6	1.3	1
88	Addendum: Visual effects in great bowerbird sexual displays and their implications for signal design. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2014 , 281, 20140864	4.4	78
87	Visual effects in great bowerbird sexual displays and their implications for signal design. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2014 , 281, 20140235	4.4	23
86	Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots. <i>BMC Evolutionary Biology</i> , 2013 , 13, 250	3	21
85	Sexual dimorphism and intra-populational colour pattern variation in the aposematic frog Dendrobates tinctorius. <i>Evolutionary Ecology</i> , 2013 , 27, 739-753	1.8	50
84	How can ten fingers shape a pot? Evidence for equivalent function in culturally distinct motor skills. <i>PLoS ONE</i> , 2013 , 8, e81614	3.7	16

83	John A. Endler. <i>Current Biology</i> , 2012 , 22, R41-3	6.3	
82	Male spotted bowerbirds propagate fruit for use in their sexual display. <i>Current Biology</i> , 2012 , 22, R264	-Б .3	7
81	How the ladybird got its spots: effects of resource limitation on the honesty of aposematic signals. <i>Functional Ecology</i> , 2012 , 26, 334-342	5.6	59
80	A framework for analysing colour pattern geometry: adjacent colours. <i>Biological Journal of the Linnean Society</i> , 2012 , 107, 233-253	1.9	88
79	Male great bowerbirds create forced perspective illusions with consistently different individual quality. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 2098	1 6-15 5	22
78	Sex as moderator of early life experience: interaction between rearing environment and sexual experience in male guppies. <i>Animal Behaviour</i> , 2012 , 84, 1023-1029	2.8	9
77	Learned vocal variation is associated with abrupt cryptic genetic change in a parrot species complex. <i>PLoS ONE</i> , 2012 , 7, e50484	3.7	26
76	Illusions promote mating success in great bowerbirds. <i>Science</i> , 2012 , 335, 335-8	33.3	49
75	Response to Comment on "Illusions Promote Mating Success in Great Bowerbirds". <i>Science</i> , 2012 , 337, 292-292	33.3	2
74	Bowerbirds, art and aesthetics: Are bowerbirds artists and do they have an aesthetic sense?. <i>Communicative and Integrative Biology</i> , 2012 , 5, 281-3	1.7	14
73	Geographical variation in allometry in the guppy (Poecilia reticulata). <i>Journal of Evolutionary Biology</i> , 2011 , 24, 2631-8	2.3	22
72	Great bowerbirds create theaters with forced perspective when seen by their audience. <i>Current Biology</i> , 2010 , 20, 1679-84	6.3	61
71	The spatial pattern of natural selection when selection depends on experience. <i>American Naturalist</i> , 2009 , 173, E62-78	3.7	23
70	Predicting the direction of ornament evolution in Trinidadian guppies (Poecilia reticulata). <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2009 , 276, 4335-43	4.4	54
69	Conservation with sense. <i>Science</i> , 2008 , 319, 281	33.3	16
68	The adaptive significance of ontogenetic colour change in a tropical python. <i>Biology Letters</i> , 2007 , 3, 40-3	3.6	48
67	DIRECT AND INDIRECT SEXUAL SELECTION AND QUANTITATIVE GENETICS OF MALE TRAITS IN GUPPIES (POECILIA RETICULATA). <i>Evolution; International Journal of Organic Evolution</i> , 2007 , 55, 1002-1	∂15	18
66	COLORFUL THOUGHTS ABOUT COLORFUL DISPLAYS. <i>Evolution; International Journal of Organic Evolution</i> , 2007 , 61, 713-715	3.8	4

(2000-2006)

65	Ornament colour selection, visual contrast and the shape of colour preference functions in great bowerbirds, Chlamydera nuchalis. <i>Animal Behaviour</i> , 2006 , 72, 1405-1416	2.8	45
64	Disruptive and cryptic coloration. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2006 , 273, 2425	5 -6 .4	66
63	The complex business of survival by aposematism. <i>Trends in Ecology and Evolution</i> , 2005 , 20, 598-603	10.9	305
62	ANIMAL VISUAL SYSTEMS AND THE EVOLUTION OF COLOR PATTERNS: SENSORY PROCESSING ILLUMINATES SIGNAL EVOLUTION. <i>Evolution; International Journal of Organic Evolution</i> , 2005 , 59, 1795.	-1 ³⁸ 18	195
61	Comparing entire colour patterns as birds see them. <i>Biological Journal of the Linnean Society</i> , 2005 , 86, 405-431	1.9	546
60	Animal visual systems and the evolution of color patterns: sensory processing illuminates signal evolution. <i>Evolution; International Journal of Organic Evolution</i> , 2005 , 59, 1795-818	3.8	66
59	Extreme reversed sexual dichromatism in a bird without sex role reversal. <i>Science</i> , 2005 , 309, 617-9	33.3	138
58	Modification of the visual background increases the conspicuousness of golden-collared manakin displays. <i>Behavioral Ecology</i> , 2004 , 15, 1003-1010	2.3	115
57	Predator mixes and the conspicuousness of aposematic signals. <i>American Naturalist</i> , 2004 , 163, 532-47	3.7	227
56	Morphological signals of sex and status in Spotted Bowerbirds. <i>Emu</i> , 2004 , 104, 21-30	1.1	8
56 55	Morphological signals of sex and status in Spotted Bowerbirds. <i>Emu</i> , 2004 , 104, 21-30 Environmental variation and the maintenance of polymorphism: the effect of ambient light spectrum on mating behaviour and sexual selection in guppies. <i>Ecology Letters</i> , 2003 , 6, 463-472	1.1	97
Ť	Environmental variation and the maintenance of polymorphism: the effect of ambient light	10	
55	Environmental variation and the maintenance of polymorphism: the effect of ambient light spectrum on mating behaviour and sexual selection in guppies. <i>Ecology Letters</i> , 2003 , 6, 463-472	10	97
55	Environmental variation and the maintenance of polymorphism: the effect of ambient light spectrum on mating behaviour and sexual selection in guppies. <i>Ecology Letters</i> , 2003 , 6, 463-472 Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection. <i>Evolution; International Journal of Organic Evolution</i> , 2001 , 55, 1644-Direct and indirect sexual selection and quantitative genetics of male traits in guppies (Poecilia	10 -53 ⁸	97
55 54 53	Environmental variation and the maintenance of polymorphism: the effect of ambient light spectrum on mating behaviour and sexual selection in guppies. <i>Ecology Letters</i> , 2003 , 6, 463-472 Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection. <i>Evolution; International Journal of Organic Evolution</i> , 2001 , 55, 1644-Direct and indirect sexual selection and quantitative genetics of male traits in guppies (Poecilia reticulata). <i>Evolution; International Journal of Organic Evolution</i> , 2001 , 55, 1002-15 Variation in response to artificial selection for light sensitivity in guppies (Poecilia reticulata).	10 538 3.8	97 235 213
55 54 53 52	Environmental variation and the maintenance of polymorphism: the effect of ambient light spectrum on mating behaviour and sexual selection in guppies. <i>Ecology Letters</i> , 2003 , 6, 463-472 Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection. <i>Evolution; International Journal of Organic Evolution</i> , 2001 , 55, 1644- Direct and indirect sexual selection and quantitative genetics of male traits in guppies (Poecilia reticulata). <i>Evolution; International Journal of Organic Evolution</i> , 2001 , 55, 1002-15 Variation in response to artificial selection for light sensitivity in guppies (Poecilia reticulata). <i>American Naturalist</i> , 2001 , 158, 36-48 FEMALE GUPPIES AGREE TO DIFFER: PHENOTYPIC AND GENETIC VARIATION IN MATE-CHOICE BEHAVIOR AND THE CONSEQUENCES FOR SEXUAL SELECTION. <i>Evolution; International Journal of</i>	10 53 ⁸ 3.8 3.7	97 235 213 50
55 54 53 52 51	Environmental variation and the maintenance of polymorphism: the effect of ambient light spectrum on mating behaviour and sexual selection in guppies. <i>Ecology Letters</i> , 2003 , 6, 463-472 Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection. <i>Evolution; International Journal of Organic Evolution</i> , 2001 , 55, 1644- Direct and indirect sexual selection and quantitative genetics of male traits in guppies (Poecilia reticulata). <i>Evolution; International Journal of Organic Evolution</i> , 2001 , 55, 1002-15 Variation in response to artificial selection for light sensitivity in guppies (Poecilia reticulata). <i>American Naturalist</i> , 2001 , 158, 36-48 FEMALE GUPPIES AGREE TO DIFFER: PHENOTYPIC AND GENETIC VARIATION IN MATE-CHOICE BEHAVIOR AND THE CONSEQUENCES FOR SEXUAL SELECTION. <i>Evolution; International Journal of Organic Evolution</i> , 2001 , 55, 1644 Carotenoid scarcity, synthetic pteridine pigments and the evolution of sexual coloration in guppies	10 538 3.8 3.7 3.8	97 235 213 50

47	Colour perception and the use of video playback experiments in animal behaviour. <i>Animal Behaviour</i> , 1998 , 56, 1035-1040	2.8	92
46	Sensory ecology, receiver biases and sexual selection. <i>Trends in Ecology and Evolution</i> , 1998 , 13, 415-20	10.9	677
45	The Relative Success of Some Methods for Measuring and Describing the Shape of Complex Objects. <i>Systematic Biology</i> , 1998 , 47, 264-281	8.4	137
44	Interacting Effects of Lek Placement, Display Behavior, Ambient Light, and Color Patterns in Three Neotropical Forest-Dwelling Birds. <i>American Naturalist</i> , 1996 , 148, 421-452	3.7	418
43	Geographic Variation in Female Preferences for Male Traits in Poecilia reticulata. <i>Evolution</i> ; <i>International Journal of Organic Evolution</i> , 1995 , 49, 456	3.8	235
42	Multiple-trait coevolution and environmental gradients in guppies. <i>Trends in Ecology and Evolution</i> , 1995 , 10, 22-9	10.9	474
41	Sensory biases and the evolution of sensory systems. <i>Trends in Ecology and Evolution</i> , 1995 , 10, 489	10.9	22
40	GEOGRAPHIC VARIATION IN FEMALE PREFERENCES FOR MALE TRAITS IN POECILIA RETICULATA. <i>Evolution; International Journal of Organic Evolution</i> , 1995 , 49, 456-468	3.8	334
39	Long-term Studies of Tropical Stream Fish Communities:The Use of Field Notes and Museum Collections to Reconstruct Communities of the Past. <i>American Zoologist</i> , 1994 , 34, 452-462		21
38			
<i>3</i> 0	The Color of Light in Forests and Its Implications. <i>Ecological Monographs</i> , 1993 , 63, 1-27	9	808
37	The Color of Light in Forests and Its Implications. <i>Ecological Monographs</i> , 1993 , 63, 1-27 Some general comments on the evolution and design of animal communication systems. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1993 , 340, 215-25	5.8	808
	Some general comments on the evolution and design of animal communication systems.		
37	Some general comments on the evolution and design of animal communication systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 1993, 340, 215-25 Editorial on Publishing Papers in Evolution. Evolution; International Journal of Organic Evolution,	5.8	424
37	Some general comments on the evolution and design of animal communication systems. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1993 , 340, 215-25 Editorial on Publishing Papers in Evolution. <i>Evolution; International Journal of Organic Evolution</i> , 1992 , 46, 1984	5.8 3.8	424
37 36 35	Some general comments on the evolution and design of animal communication systems. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1993 , 340, 215-25 Editorial on Publishing Papers in Evolution. <i>Evolution; International Journal of Organic Evolution</i> , 1992 , 46, 1984 Signals, Signal Conditions, and the Direction of Evolution. <i>American Naturalist</i> , 1992 , 139, S125-S153 Variation in the appearance of guppy color patterns to guppies and their predators under different	5.8 3.8 3.7	424 2 1276
37 36 35 34	Some general comments on the evolution and design of animal communication systems. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1993 , 340, 215-25 Editorial on Publishing Papers in Evolution. <i>Evolution; International Journal of Organic Evolution</i> , 1992 , 46, 1984 Signals, Signal Conditions, and the Direction of Evolution. <i>American Naturalist</i> , 1992 , 139, S125-S153 Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. <i>Vision Research</i> , 1991 , 31, 587-608 On the measurement and classification of colour in studies of animal colour patterns. <i>Biological</i>	5.8 3.8 3.7 2.1	424 2 1276 384
37 36 35 34 33	Some general comments on the evolution and design of animal communication systems. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1993 , 340, 215-25 Editorial on Publishing Papers in Evolution. <i>Evolution; International Journal of Organic Evolution</i> , 1992 , 46, 1984 Signals, Signal Conditions, and the Direction of Evolution. <i>American Naturalist</i> , 1992 , 139, S125-S153 Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. <i>Vision Research</i> , 1991 , 31, 587-608 On the measurement and classification of colour in studies of animal colour patterns. <i>Biological Journal of the Linnean Society</i> , 1990 , 41, 315-352	5.8 3.8 3.7 2.1	424 2 1276 384 881

(1981-1988)

29	Sexual selection and predation risk in guppies. <i>Nature</i> , 1988 , 332, 593-594	50.4	45
28	The Processes of Evolution: Toward a Newer Synthesis. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 1988 , 19, 395-421		121
27	Frequency-dependent predation, crypsis and aposematic coloration. <i>Philosophical Transactions of the Royal Society of London Series B, Biological Sciences</i> , 1988 , 319, 505-23		233
26	Visual pigment polymorphism in the guppy Poecilia reticulata. Vision Research, 1987 , 27, 1243-52	2.1	128
25	Predation, light intensity and courtship behaviour in Poecilia reticulata (Pisces: Poeciliidae). <i>Animal Behaviour</i> , 1987 , 35, 1376-1385	2.8	359
24	Parasite load predicts mate choice in guppies. <i>Behavioral Ecology and Sociobiology</i> , 1987 , 21, 291-295	2.5	160
23	Natural and sexual selection on color patterns in poeciliid fishes. <i>Developments in Environmental Biology of Fishes</i> , 1984 , 95-111		17
22	Progressive background in moths, and a quantitative measure of crypsis. <i>Biological Journal of the Linnean Society</i> , 1984 , 22, 187-231	1.9	244
21	Natural and sexual selection on color patterns in poeciliid fishes. <i>Environmental Biology of Fishes</i> , 1983 , 9, 173-190	1.6	650
20	Testing Causal Hypotheses in the Study of Geographical Variation 1983 , 424-443		15
19	THE IMPACT OF PREDATION ON LIFE HISTORY EVOLUTION IN TRINIDADIAN GUPPIES (POECILIA RETICULATA). <i>Evolution; International Journal of Organic Evolution</i> , 1982 , 36, 160-177	3.8	596
18	CONVERGENT AND DIVERGENT EFFECTS OF NATURAL SELECTION ON COLOR PATTERNS IN TWO FISH FAUNAS. <i>Evolution; International Journal of Organic Evolution</i> , 1982 , 36, 178-188	3.8	37
17	Alternative Hypotheses in Biogeography: Introduction and Synopsis of the Symposium. <i>American Zoologist</i> , 1982 , 22, 349-354		21
16	Problems in Distinguishing Historical from Ecological Factors in Biogeography. <i>American Zoologist</i> , 1982 , 22, 441-452		216
15	The Impact of Predation on Life History Evolution in Trinidadian Guppies (Poecilia reticulata). <i>Evolution; International Journal of Organic Evolution</i> , 1982 , 36, 160	3.8	509
14	Convergent and Divergent Effects of Natural Selection on Color Patterns in Two Fish Faunas. <i>Evolution; International Journal of Organic Evolution</i> , 1982 , 36, 178	3.8	33
13	Quantitative matrix comparisons in ecological and evolutionary investigations. <i>Journal of Theoretical Biology</i> , 1982 , 99, 777-795	2.3	159
12	An overview of the relationships between mimicry and crypsis. <i>Biological Journal of the Linnean Society</i> , 1981 , 16, 25-31	1.9	184

11	NATURAL SELECTION ON COLOR PATTERNS IN POECILIA RETICULATA. <i>Evolution; International Journal of Organic Evolution</i> , 1980 , 34, 76-91	3.8	978
10	Natural Selection on Color Patterns in Poecilia reticulata. <i>Evolution; International Journal of Organic Evolution</i> , 1980 , 34, 76	3.8	415
9	Gene flow and life history patterns. <i>Genetics</i> , 1979 , 93, 263-84	4	26
8	Geographic Variation, Speciation, and Clines <i>Evolution; International Journal of Organic Evolution</i> , 1978 , 32, 687	3.8	
7	A Predator View of Animal Color Patterns 1978, 319-364		542
6	Gene Frequency Clines in the Presence of Selection Opposed by Gene Flow. <i>American Naturalist</i> , 1975 , 109, 659-676	3.7	138
5	Gene flow and population differentiation. <i>Science</i> , 1973 , 179, 243-50	33.3	531
4	Kinesthetic Orientation in the California Newt (Taricha Torosa). <i>Behaviour</i> , 1970 , 37, 15-23	1.4	9
3	Boundary Strength Analysis: Combining colour pattern geometry and coloured patch visual properties for use in predicting behaviour and fitness		3
2	pavo 2: new tools for the spectral and spatial analysis of colour in R		2
1	Quantitative Colour Pattern Analysis (QCPA): A Comprehensive Framework for the Analysis of Colour Patterns in Nature		3