
Shishir Pandya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6012047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Predictive Theory for Domain Walls in Oxide Ferroelectrics Based on Interatomic Interactions and its Implications for Collective Material Properties. Advanced Materials, 2022, 34, e2106021.	11.1	7
2	Pyroelectric thin filmsâ \in "Past, present, and future. APL Materials, 2021, 9, .	2.2	20
3	Designing Optimal Perovskite Structure for High Ionic Conduction. Advanced Materials, 2020, 32, e1905178.	11.1	30
4	Large Polarization and Susceptibilities in Artificial Morphotropic Phase Boundary PbZr _{1â^²} <i>_x</i> Ti <i>_x</i> O ₃ Superlattices. Advanced Electronic Materials, 2020, 6, 1901395.	2.6	17
5	Revealing ferroelectric switching character using deep recurrent neural networks. Nature Communications, 2019, 10, 4809.	5.8	34
6	Quantifying Intrinsic, Extrinsic, Dielectric, and Secondary Pyroelectric Responses in PbZr _{1–<i>x</i>} Ti _{<i>x</i>} O ₃ Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 35146-35154.	4.0	16
7	New approach to waste-heat energy harvesting: pyroelectric energy conversion. NPG Asia Materials, 2019, 11, .	3.8	78
8	Enhanced pyroelectric properties of Bi1â^'xLaxFeO3 thin films. APL Materials, 2019, 7, .	2.2	11
9	Understanding the Role of Ferroelastic Domains on the Pyroelectric and Electrocaloric Effects in Ferroelectric Thin Films. Advanced Materials, 2019, 31, e1803312.	11.1	34
10	Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nature Materials, 2018, 17, 432-438.	13.3	198
11	Nonstoichiometry, structure, and properties of Ba _{1â^'x} TiO _y thin films. Journal of Materials Chemistry C, 2018, 6, 10751-10759.	2.7	16
12	Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr _{0.2} Ti _{0.8} O ₃ Thin Films. Advanced Materials, 2018, 30, e1800701.	11.1	23
13	Resonant domain-wall-enhanced tunable microwave ferroelectrics. Nature, 2018, 560, 622-627.	13.7	82
14	Pyroelectric and electrocaloric effects in ferroelectric silicon-doped hafnium oxide thin films. Physical Review Materials, 2018, 2, .	0.9	26
15	Large polarization gradients and temperature-stable responses in compositionally-graded ferroelectrics. Nature Communications, 2017, 8, 14961.	5.8	60
16	Slow Conductance Relaxation in Graphene–Ferroelectric Field-Effect Transistors. Journal of Physical Chemistry C, 2017, 121, 7542-7548.	1.5	15
17	Direct Measurement of Pyroelectric and Electrocaloric Effects in Thin Films. Physical Review Applied, 2017, 7, .	1.5	54
18	Epitaxy on polycrystalline substrates. Science, 2017, 358, 587-588.	6.0	10

Shishir Pandya

#	Article	lF	CITATIONS
19	Three‣tate Ferroelastic Switching and Large Electromechanical Responses in PbTiO ₃ Thin Films. Advanced Materials, 2017, 29, 1702069.	11.1	74
20	Single gate p-n junctions in graphene-ferroelectric devices. Applied Physics Letters, 2016, 108, .	1.5	26
21	New modalities of strain-control of ferroelectric thin films. Journal of Physics Condensed Matter, 2016, 28, 263001.	0.7	86
22	Frontiers in strain-engineered multifunctional ferroic materials. MRS Communications, 2016, 6, 151-166.	0.8	17
23	Strain-induced growth instability and nanoscale surface patterning in perovskite thin films. Scientific Reports, 2016, 6, 26075.	1.6	24
24	Identifying orthogonal solvents for solution processed organic transistors. Organic Electronics, 2016, 30, 18-29.	1.4	90
25	Complex Evolution of Built-in Potential in Compositionally-Graded PbZr _{1–<i>x</i>} Ti _{<i>x</i>} O ₃ Thin Films. ACS Nano, 2015, 9, 7332-7342.	7.3	39
26	Effect of sintering temperature on the mechanical and electrochemical properties of austenitic stainless steel. Materials Science & amp; Engineering A: Structural Materials: Properties,	2.6	52

Microstructure and Processing, 2012, 556, 271-277.