Sunita K Agarwal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6011917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple Endocrine Neoplasia Type 1: Latest Insights. Endocrine Reviews, 2021, 42, 133-170.	8.9	85
2	Patients With MEN1 Are at an Increased Risk for Venous Thromboembolism. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e460-e468.	1.8	3
3	A Blood-based Polyamine Signature Associated With MEN1 Duodenopancreatic Neuroendocrine Tumor Progression. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e4969-e4980.	1.8	9
4	Two distinct classes of thymic tumors in patients with MEN1 show LOH at the MEN1 locus. Endocrine-Related Cancer, 2021, 28, L15-L19.	1.6	5
5	18F-FDOPA PET/CT accurately identifies MEN1-associated pheochromocytoma. Endocrinology, Diabetes and Metabolism Case Reports, 2020, 2020, .	0.2	4
6	Frequency and consequence of the recurrent YY1 p.T372R mutation in sporadic insulinomas. Endocrine-Related Cancer, 2018, 25, L31-L35.	1.6	8
7	Functional Defects From Endocrine Disease–Associated Mutations in HLXB9 and Its Interacting Partner, NONO. Endocrinology, 2018, 159, 1199-1212.	1.4	4
8	Epigenetic regulation in the tumorigenesis of MEN1-associated endocrine cell types. Journal of Molecular Endocrinology, 2018, 61, R13-R24.	1.1	16
9	Transcriptional alterations in hereditary and sporadic nonfunctioning pancreatic neuroendocrine tumors according to genotype. Cancer, 2018, 124, 636-647.	2.0	10
10	Familial isolated primary hyperparathyroidism associated with germline GCM2 mutations is more aggressive and has a lesser rate of biochemical cure. Surgery, 2018, 163, 31-34.	1.0	34
11	Probability of Positive Genetic Testing Results in Patients with Family History of Primary Hyperparathyroidism. Journal of the American College of Surgeons, 2018, 226, 933-938.	0.2	21
12	Molecular Genetics of MEN1-Related Neuroendocrine Tumors. , 2017, , 47-64.		1
13	Long Noncoding RNA MEG3 Is an Epigenetic Determinant of Oncogenic Signaling in Functional Pancreatic Neuroendocrine Tumor Cells. Molecular and Cellular Biology, 2017, 37, .	1.1	42
14	The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocrine-Related Cancer, 2017, 24, T119-T134.	1.6	71
15	Update on exploring the tumors of multiple endocrine neoplasia type 1 in mouse models for basic and preclinical studies. International Journal of Endocrine Oncology, 2017, 4, 113-116.	0.4	1
16	Ethnicity of Patients With Germline GCM2-Activating Variants and Primary Hyperparathyroidism. Journal of the Endocrine Society, 2017, 1, 488-499.	0.1	28
17	A patient with MEN1 typical features and MEN2-like features. International Journal of Endocrine Oncology, 2016, 3, 89-95.	0.4	7
18	GCM2 -Activating Mutations in Familial Isolated Hyperparathyroidism. American Journal of Human Genetics, 2016, 99, 1034-1044.	2.6	119

#	Article	IF	CITATIONS
19	Consequence of Menin Deficiency in Mouse Adipocytes Derived by In Vitro Differentiation. International Journal of Endocrinology, 2015, 2015, 1-10.	0.6	5
20	Epigenetic Regulation of the IncRNA MEG3 and Its Target c-MET in Pancreatic Neuroendocrine Tumors. Molecular Endocrinology, 2015, 29, 224-237.	3.7	107
21	Germline <i>HABP2</i> Mutation Causing Familial Nonmedullary Thyroid Cancer. New England Journal of Medicine, 2015, 373, 448-455.	13.9	128
22	Pro-oncogenic Roles of HLXB9 Protein in Insulinoma Cells through Interaction with Nono Protein and Down-regulation of the c-Met Inhibitor Cblb (Casitas B-lineage Lymphoma b). Journal of Biological Chemistry, 2015, 290, 25595-25608.	1.6	10
23	FBP1 Is an Interacting Partner of Menin. International Journal of Endocrinology, 2014, 2014, 1-6.	0.6	5
24	Exploring the tumors of multiple endocrine neoplasia type 1 in mouse models for basic and preclinical studies. International Journal of Endocrine Oncology, 2014, 1, 153-161.	0.4	23
25	Menin Immunoreactivity in Secretory Granules of Human Pancreatic Islet Cells. Applied Immunohistochemistry and Molecular Morphology, 2014, 22, 748-755.	0.6	2
26	CSK-3β Protein Phosphorylates and Stabilizes HLXB9 Protein in Insulinoma Cells to Form a Targetable Mechanism of Controlling Insulinoma Cell Proliferation. Journal of Biological Chemistry, 2014, 289, 5386-5398.	1.6	15
27	Germline and Somatic Mutations in Cyclin-Dependent Kinase Inhibitor Genes CDKN1A, CDKN2B, and CDKN2C in Sporadic Parathyroid Adenomas. Hormones and Cancer, 2013, 4, 301-307.	4.9	63
28	The embryonic transcription factor Hlxb9 is a menin interacting partner that controls pancreatic β-cell proliferation and the expression of insulin regulators. Endocrine-Related Cancer, 2013, 20, 111-122.	1.6	28
29	Multiple Endocrine Neoplasia Type 1. Frontiers of Hormone Research, 2013, 41, 1-15.	1.0	55
30	Genome-Wide Characterization of Menin-Dependent H3K4me3 Reveals a Specific Role for Menin in the Regulation of Genes Implicated in MEN1-Like Tumors. PLoS ONE, 2012, 7, e37952.	1.1	46
31	The Tumor Suppressor Protein Menin Inhibits AKT Activation by Regulating Its Cellular Localization. Cancer Research, 2011, 71, 371-382.	0.4	95
32	An Intronic Mutation is Associated with Prolactinoma in a Young Boy, Decreased Penetrance in his Large Family, and Variable Effects onMEN1 mRNAand Protein. Hormone and Metabolic Research, 2009, 41, 630-634.	0.7	16
33	Rare Germline Mutations in Cyclin-Dependent Kinase Inhibitor Genes in Multiple Endocrine Neoplasia Type 1 and Related States. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 1826-1834.	1.8	288
34	The <i>MEN1</i> Gene and Pituitary Tumours. Hormone Research in Paediatrics, 2009, 71, 131-138.	0.8	38
35	The utility of routine transcervical thymectomy for multiple endocrine neoplasia 1-related hyperparathyroidism. Surgery, 2008, 144, 878-884.	1.0	53
36	The parafibromin tumor suppressor protein interacts with actin-binding proteins actinin-2 and actinin-3. Molecular Cancer, 2008, 7, 65.	7.9	33

#	Article	IF	CITATIONS
37	Parathyroid tumor development involves deregulation of homeobox genes. Endocrine-Related Cancer, 2008, 15, 267-275.	1.6	34
38	Mouse Embryo Fibroblasts Lacking the Tumor Suppressor Menin Show Altered Expression of Extracellular Matrix Protein Genes. Molecular Cancer Research, 2007, 5, 1041-1051.	1.5	17
39	The Parathyroid/Pituitary Variant of Multiple Endocrine Neoplasia Type 1 Usually Has Causes Other thanp27Kip1Mutations. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1948-1951.	1.8	84
40	Distribution of Menin-Occupied Regions in Chromatin Specifies a Broad Role of Menin in Transcriptional Regulation. Neoplasia, 2007, 9, 101-107.	2.3	47
41	Genetic interactions between Drosophila melanogaster menin and Jun/Fos. Developmental Biology, 2006, 298, 59-70.	0.9	16
42	Genome-Wide Analysis of Menin Binding Provides Insights into MEN1 Tumorigenesis. PLoS Genetics, 2006, 2, e51.	1.5	193
43	Parafibromin, product of the hyperparathyroidism-jaw tumor syndrome gene HRPT2, regulates cyclin D1/PRAD1 expression. Oncogene, 2005, 24, 1272-1276.	2.6	164
44	Menin Molecular Interactions: Insights into Normal Functions and Tumorigenesis. Hormone and Metabolic Research, 2005, 37, 369-374.	0.7	112
45	Familial Isolated Hyperparathyroidism Is Rarely Caused by Germline Mutation inHRPT2, the Gene for the Hyperparathyroidism-Jaw Tumor Syndrome. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 96-102.	1.8	162
46	Multiple Endocrine Neoplasia Type 1 Variant with Frequent Prolactinoma and Rare Gastrinoma. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3776-3784.	1.8	66
47	Molecular Pathology of theMEN1Gene. Annals of the New York Academy of Sciences, 2004, 1014, 189-198.	1.8	153
48	Menin, a tumor suppressor, associates with nonmuscle myosin II-A heavy chain. Oncogene, 2003, 22, 6347-6358.	2.6	42
49	Transcription factor JunD, deprived of menin, switches from growth suppressor to growth promoter. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10770-10775.	3.3	111
50	The 32-Kilodalton Subunit of Replication Protein A Interacts with Menin, the Product of the MEN1 Tumor Suppressor Gene. Molecular and Cellular Biology, 2003, 23, 493-509.	1.1	109
51	Familial Isolated Hyperparathyroidism. Medicine (United States), 2002, 81, 1-26.	0.4	232
52	HRPT2, encoding parafibromin, is mutated in hyperparathyroidism–jaw tumor syndrome. Nature Genetics, 2002, 32, 676-680.	9.4	686
53	Characterization of a MEN1 ortholog from Drosophila melanogaster. Gene, 2001, 263, 31-38.	1.0	44
54	Multiple endocrine neoplasia type 1: new clinical and basic findings. Trends in Endocrinology and Metabolism, 2001, 12, 173-178.	3.1	180

#	Article	IF	CITATIONS
55	The tumor suppressor protein menin interacts with NF-κB proteins and inhibits NF-κB-mediated transactivation. Oncogene, 2001, 20, 4917-4925.	2.6	230
56	Study of the Multiple Endocrine Neoplasia Type 1, Growth Hormone-Releasing Hormone Receptor, Gsα, and Gi2α Genes in Isolated Familial Acromegaly1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 542-544.	1.8	26
57	Study of the Multiple Endocrine Neoplasia Type 1, Growth Hormone-Releasing Hormone Receptor, GsÂ, and Gi2Â Genes in Isolated Familial Acromegaly. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 542-544.	1.8	16
58	MEN1 gene mutation analysis of high-grade neuroendocrine lung carcinoma. , 2000, 28, 58-65.		68
59	Identification and characterization of JunD missense mutants that lack menin binding. Oncogene, 2000, 19, 4706-4712.	2.6	31
60	lsolation, characterization, expression and functional analysis of the zebrafish ortholog of MEN1. Mammalian Genome, 2000, 11, 448-454.	1.0	37
61	Pituitary Macroadenoma in a 5-Year-Old: An Early Expression of Multiple Endocrine Neoplasia Type 1 ¹ . Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4776-4780.	1.8	112
62	Pituitary Macroadenoma in a 5-Year-Old: An Early Expression of Multiple Endocrine Neoplasia Type 1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4776-4780.	1.8	94
63	<i>MEN1</i> Gene Analysis in Sporadic Adrenocortical Neoplasms ¹ . Journal of Clinical Endocrinology and Metabolism, 1999, 84, 216-219.	1.8	79
64	Cloning and expression of a novel chicken sulfotransferase cDNA regulated by GH. Journal of Endocrinology, 1999, 160, 491-500.	1.2	13
65	The gene for multiple endocrine neoplasia type 1: recent findings. Bone, 1999, 25, 119-122.	1.4	36
66	Menin Interacts with the AP1 Transcription Factor JunD and Represses JunD-Activated Transcription. Cell, 1999, 96, 143-152.	13.5	569
67	MEN1 Gene Analysis in Sporadic Adrenocortical Neoplasms. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 216-219.	1.8	67
68	Comparative Genomic Hybridization Analysis of Human Parathyroid Tumors. Cancer Genetics and Cytogenetics, 1998, 106, 30-36.	1.0	97
69	Common ancestral mutations in theMEN1 gene is likely responsible for the prolactinoma variant of MEN1 (MEN1Burin) in four kindreds from Newfoundland. Human Mutation, 1998, 11, 264-269.	1.1	120
70	Analysis of recurrent germline mutations in theMEN1 gene encountered in apparently unrelated families. , 1998, 12, 75-82.		37
71	11q13 Allelotype Analysis in 27 Northern American MEN1 Kindreds Identifies Two Distinct Founder Chromosomes. Molecular Genetics and Metabolism, 1998, 63, 151-155.	0.5	8
72	Common ancestral mutations in the MEN1 gene is likely responsible for the prolactinoma variant of MEN1 (MEN1Burin) in four kindreds from Newfoundland. Human Mutation, 1998, 11, 264-269.	1.1	8

#	Article	IF	CITATIONS
73	Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. Human Molecular Genetics, 1997, 6, 1169-1175.	1.4	415
74	Identification of MEN1 gene mutations in sporadic carcinoid tumors of the lung. Human Molecular Genetics, 1997, 6, 2285-2290.	1.4	231
75	Positional Cloning of the Gene for Multiple Endocrine Neoplasia-Type 1 . Science, 1997, 276, 404-407.	6.0	1,886
76	A 2.8-Mb Clone Contig of the Multiple Endocrine Neoplasia Type 1 (MEN1) Region at 11q13. Genomics, 1997, 42, 436-445.	1.3	40
77	A Transcript Map for the 2.8-Mb Region Containing the Multiple Endocrine Neoplasia Type 1 Locus. Genome Research, 1997, 7, 725-735.	2.4	115
78	Somatic mutation of the MEN1 gene in parathyroid tumours. Nature Genetics, 1997, 16, 375-378.	9.4	401
79	Chronic administration of growth hormone (GH) to adult chickens exerts marked effects on circulating concentrations of insulin-like growth factor-I (IGF-I), IGF binding proteins, hepatic GH regulated gene I, and hepatic GH receptor mRNA. Endocrine, 1997, 6, 117-124.	2.2	18
80	Eighteen new polymorphic markers in the multiple endocrine neoplasia type 1 (MEN1) region. Human Genetics, 1997, 101, 102-108.	1.8	53
81	Interferon activity of mitogen-induced chicken splenic lymphocytes which do not express interferon mRNA. Veterinary Immunology and Immunopathology, 1996, 53, 269-275.	0.5	5
82	Comparison of Gene Expression in Normal and Growth Hormone Receptor-Deficient Dwarf Chickens Reveals a Novel Growth Hormone-Regulated Gene. Biochemical and Biophysical Research Communications, 1995, 206, 153-160.	1.0	30
83	Dysfunctional growth hormone receptor in a strain of sex-linked dwarf chicken: evidence for a mutation in the intracellular domain. Journal of Endocrinology, 1994, 142, 427-434.	1.2	109
84	The adenine phosphoribosyltransferase-encoding gene of Arabidopsis thaliana. Gene, 1994, 143, 211-216.	1.0	79
85	Overexpression of a truncated growth hormone receptor in the sex-linked dwarf chicken: evidence for a splice mutation. Molecular Endocrinology, 1993, 7, 1391-1398.	3.7	30