Claudia Gutiérrez-Antonio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6011880/publications.pdf

Version: 2024-02-01

64 papers

893 citations

471509 17 h-index 28 g-index

65 all docs 65 docs citations

65 times ranked 589 citing authors

#	Article	IF	CITATIONS
1	Synthesis and intensification of a biorefinery to produce renewable aviation fuel, biofuels, bioenergy and chemical products from <i>Jatropha Curcas</i> fruit. IET Renewable Power Generation, 2022, 16, 2988-3008.	3.1	8
2	Estudio comparativo de modelos matemáticos para predecir el poder calorÃfico de residuos agrÃcolas mexicanos. Tecno Lógicas, 2022, 25, e2142.	0.3	1
3	Production of renewable aviation fuel from microalgae. , 2022, , 639-664.		3
4	Opportunities in the intensification of the production of biofuels for the generation of electrical and thermal energy. , 2022 , , $157-196$.		O
5	Advanced biorefineries for the production of renewable aviation fuel., 2022, , 103-124.		1
6	Intensification of the alcohol-to-jet process to produce renewable aviation fuel. Chemical Engineering and Processing: Process Intensification, 2021, 160, 108270.	3.6	28
7	Modelling, simulation and intensification of the hydroprocessing of chicken fat to produce renewable aviation fuel. Chemical Engineering and Processing: Process Intensification, 2021, 159, 108250.	3.6	17
8	Production processes for the conversion of triglyceride feedstock., 2021,, 55-91.		O
9	Biojet fuel: Driving the aviation sector to sustainability. , 2021, , 1-31.		2
10	Production processes for the conversion of sugar and starchy feedstock., 2021,, 93-127.		O
11	Supply chain for the production of biojet fuel. , 2021, , 201-240.		2
12	Process intensification and integration in the production of biojet fuel., 2021, , 171-199.		0
13	Modelling and simulation of a multiple feedstock integrated biorefinery for the production of aviation biofuel and other biofuels. Computer Aided Chemical Engineering, 2021, , 1885-1890.	0.5	2
14	A thermal-hydrodynamic model to evaluate the potential of different tray designs for production of renewable aviation fuel through reactive distillation. Chemical Engineering and Processing: Process Intensification, 2021, 166, 108482.	3.6	6
15	The integration of pelletized agricultural residues into electricity grid: Perspectives from the human, environmental and economic aspects. Journal of Cleaner Production, 2021, 321, 128932.	9.3	8
16	Renewable feedstock and its conversion routes to biojet fuel. , 2021, , 33-54.		1
17	Production of renewable aviation fuel at industrial scale: opportunities and challenges. , 2021, , 247-267.		1
18	The future trends in the production of biojet fuel. , 2021, , 241-254.		2

#	Article	IF	Citations
19	Production and characterization of fuel pellets from rice husk and wheat straw. Renewable Energy, 2020, 145, 500-507.	8.9	95
20	Modelling and Simulation of the Conversion of Chicken Fat to Produce Renewable Aviation Fuel through the Hydrotreating Process. Computer Aided Chemical Engineering, 2020, , 1399-1404.	0.5	1
21	Strategic planning for the use of waste biomass pellets in Mexican power plants. Renewable Energy, 2019, 130, 622-632.	8.9	31
22	Modelling of production processes for liquid biofuels through CFD: A review of conventional and intensified technologies. Chemical Engineering and Processing: Process Intensification, 2019, 143, 107629.	3.6	17
23	Development of a biorefinery scheme to produce biofuels from waste cooking oil. Computer Aided Chemical Engineering, 2019, , 289-294.	0.5	6
24	Optimal plant layout considering the safety instrumented system design for hazardous equipment. Chemical Engineering Research and Design, 2019, 124, 97-120.	5.6	20
25	5. Optimal design methodology for homogeneous azeotropic distillation columns. , 2019, , 125-143.		0
26	Intensification of the hydrotreating process to produce renewable aviation fuel through reactive distillation. Chemical Engineering and Processing: Process Intensification, 2018, 124, 122-130.	3.6	29
27	Modeling, simulation and intensification of hydroprocessing of micro-algae oil to produce renewable aviation fuel. Clean Technologies and Environmental Policy, 2018, 20, 1589-1598.	4.1	27
28	Design of a low-cost process for the production of biodiesel using waste oil as raw material. Computer Aided Chemical Engineering, 2018, , 1529-1534.	0.5	7
29	Feasibility of energy integration for high-pressure biofuels production processes. Computer Aided Chemical Engineering, 2018, , 1523-1528.	0.5	2
30	Feasibility study of using reactive distillation for the production of renewable aviation fuel. Computer Aided Chemical Engineering, 2018, , 639-644.	0.5	2
31	A MILP approach for optimal storage vessels layout based on the quantitative risk analysis methodology. Chemical Engineering Research and Design, 2018, 120, 1-13.	5.6	17
32	Hydrotreating of Triglyceride Feedstock to Produce Renewable Aviation Fuel. Recent Innovations in Chemical Engineering, 2018, 11, 77-89.	0.4	4
33	Optimal planning for the supply chain of biofuels for aviation in Mexico. Clean Technologies and Environmental Policy, 2017, 19, 1387-1402.	4.1	21
34	Strategic Planning for the Supply Chain of Aviation Biofuel with Consideration of Hydrogen Production. Industrial & Description of Engineering Chemistry Research, 2017, 56, 13812-13830.	3.7	17
35	Process integration for the supercritical production of biodiesel and the production of lignocellulosic bioethanol. Computer Aided Chemical Engineering, 2017, 40, 931-936.	0.5	5
36	Energy Integration and Optimization of the Separation Section in a Hydrotreating Process for the Production of Biojet Fuel. Computer Aided Chemical Engineering, 2017, 40, 661-666.	0.5	3

#	Article	IF	CITATIONS
37	Mass and energy integration for the supercritical process for biodiesel production and a bioethanol dehydration train. Computer Aided Chemical Engineering, 2016, , 487-492.	0.5	O
38	Energy consumption maps for quaternary distillation sequences. Computer Aided Chemical Engineering, 2016, 38, 121-126.	0.5	2
39	Energy Integration of a Hydrotreatment Process for Sustainable Biojet Fuel Production. Industrial & Engineering Chemistry Research, 2016, 55, 8165-8175.	3.7	29
40	Energy integration of a hydrotreating process for the production of biojet fuel. Computer Aided Chemical Engineering, 2016, 38, 127-132.	0.5	6
41	Stochastic Optimization for Process Intensification. , 2016, , 261-277.		0
42	Controllability Analysis of Distillation Sequences for the Separation of Bioâ€Jet Fuel and Green Diesel Fractions. Chemical Engineering and Technology, 2016, 39, 2273-2283.	1.5	13
43	Simultaneous energy integration and intensification of the hydrotreating process to produce biojet fuel from jatropha curcas. Chemical Engineering and Processing: Process Intensification, 2016, 110, 134-145.	3.6	43
44	Multiobjective Stochastic Optimization of Dividing-wall Distillation Columns Using a Surrogate Model Based on Neural Networks. Chemical and Biochemical Engineering Quarterly, 2016, 29, 491-504.	0.9	17
45	Design of non-equilibrium stage separation systems by a stochastic optimization approach for a class of mixtures. Chemical Engineering and Processing: Process Intensification, 2015, 88, 58-69.	3.6	9
46	Analysis of alternative non-catalytic processes for the production of biodiesel fuel. Clean Technologies and Environmental Policy, 2015, 17, 2041-2054.	4.1	13
47	Intensification of a hydrotreating process to produce biojet fuel using thermally coupled distillation. Chemical Engineering and Processing: Process Intensification, 2015, 88, 29-36.	3.6	41
48	Mechanical Design and Hydraulic Analysis of Sieve Trays in Dividing Wall Columns. Computer Aided Chemical Engineering, 2014, 33, 1375-1380.	0.5	1
49	Effect of Using Adjusted Parameters, Local and Global Optimums, for Phase Equilibrium Prediction on the Synthesis of Azeotropic Distillation Columns. Industrial & Engineering Chemistry Research, 2014, 53, 1489-1502.	3.7	5
50	Analysis of Dynamic Performance for Multiple Dividing Wall Distillation Columns. Industrial & Engineering Chemistry Research, 2013, 52, 9922-9929.	3.7	18
51	Simulation and optimization of a biojet fuel production process. Computer Aided Chemical Engineering, 2013, 32, 13-18.	0.5	19
52	Hybrid Distillation/Melt Crystallization Process Using Thermally Coupled Arrangements: Optimization with evolutive algorithms. Chemical Engineering and Processing: Process Intensification, 2013, 67, 25-38.	3.6	14
53	Optimal design of distillation systems with less than Nâ [^] 1 columns for a class of four component mixtures. Chemical Engineering Research and Design, 2012, 90, 1425-1447.	5.6	5
54	Optimal design and control of trains of dividing wall columns for the separation of petrochemical mixtures. Computer Aided Chemical Engineering, 2012, 30, 742-746.	0.5	3

#	Article	IF	CITATIONS
55	Optimal design of multiple dividing wall columns based on genetic programming. Computer Aided Chemical Engineering, 2011, , 176-180.	0.5	O
56	Speeding up a multiobjective genetic algorithm with constraints through artificial neuronal networks. Computer Aided Chemical Engineering, 2010, 28, 391-396.	0.5	13
57	Extractive Dividing Wall Column: Design and Optimization. Industrial & Engineering Chemistry Research, 2010, 49, 3672-3688.	3.7	142
58	Dividing wall distillation columns for separation of azeotropic mixtures: feasibility procedure and rigorous optimization. Computer Aided Chemical Engineering, 2009, 26, 555-560.	0.5	4
59	Design of Reactive Distillation with Thermal Coupling for the Synthesis of Biodiesel using Genetic Algorithms. Computer Aided Chemical Engineering, 2009, 26, 549-554.	0.5	5
60	Pareto front of ideal Petlyuk sequences using a multiobjective genetic algorithm with constraints. Computers and Chemical Engineering, 2009, 33, 454-464.	3.8	78
61	EFFECT OF DIFFERENT THERMODYNAMIC MODELS ON THE DESIGN OF HOMOGENEOUS AZEOTROPIC DISTILLATION COLUMNS. Chemical Engineering Communications, 2008, 195, 1059-1075.	2.6	7
62	Method for the Design of Azeotropic Distillation Columns. Industrial & Engineering Chemistry Research, 2007, 46, 6635-6644.	3.7	10
63	A Fast Method To Calculate Residue Curve Maps. Industrial & Engineering Chemistry Research, 2006, 45, 4429-4432.	3.7	5
64	Production of fuel pellets from bean crop residues (<i>Phaseolus vulgaris</i>). IET Renewable Power Generation, 0, , .	3.1	2