Wei-liang Liu

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/6011595/publications.pdf
Version: 2024-02-01

20	564 papers	1040056 citations	794594 h-index
g-index			

$1 \quad$ Central Tibetan Meso-Tethyan oceanic plateau. Lithos, 2014, 210-211, 278-288.

Age and composition of the Rebang Co and Julu ophiolites, central Tibet: implications for the evolution of the Bangong Meso-Tethys. International Geology Review, 2014, 56, 430-447.
2.1

Identification of a selective DNA ligase for accurate recognition and ultrasensitive quantification of
3 <i>N</i>⁶-methyladenosine in RNA at one-nucleotide resolution. Chemical Science, 2018, 9,
7.4

3354-3359.

Geochemistry and geochronology of the Mesozoic Lanong ophiolitic mÃ@lange, northern Tibet:
Implications for petrogenesis and tectonic evolution. Lithos, 2017, 292-293, 111-131.
1.4

Origin and tectonic implications of the Shiquanhe high-Mg andesite, western Bangong suture, Tibet.
Gondwana Research, 2018, 60, 1-14.

Geochronology, petrogenesis and tectonic implications of the Jurassic Namcoâ $€^{\prime \prime}$ Renco ophiolites,
Tibet. International Geology Review, 2015, 57, 508-528.
2.1

Origin of Mesozoic ophiolitic mÃ@langes in the western Yarlung Zangbo suture zone, SW Tibet.
Origin of Mesozoic ophiolitic mÅ@langes
Gondwana Research, 2019, 76, 204-223.
$6.0 \quad 15$

Age and nature of the Jurassicâe"Early Cretaceous mafic and ultramafic rocks from the Yilashan area,
8 Bangongâ€"Nujiang suture zone, central Tibet: implications for petrogenesis and tectonic Evolution.
International Geology Review, 2018, 60, 1244-1266.
9 Geochemical and zircon Uâ $\epsilon^{\prime \prime} \mathrm{Pb}$ age constraints on the origin of the Mesozoic Xigaze ophiolite, Yarlung
Zangbo suture zone, SW China. International Geology Review, 2018, 60, 1267-1289.

The Chemical Remagnetization of Ediacaran Dolomite in the Taishan Paleoâ€Reservoir, South China.
10 Journal of Geophysical Research: Solid Earth, 2018, 123, 6161-6175.
3.4

7

11 Identifying and Dating the Destruction of Hydrocarbon Reservoirs Using Secondary Chemical
Remanent Magnetization. Geophysical Research Letters, 2019, 46, 11100-11108.
12 Stratigraphy and Provenance of the Paleogene Synâ \in Rift Sediments in Centralâ $€$ Southern Palawan: Paleogeographic Significance for the South China Margin. Tectonics, 2021, 40, e2021TC006753.
2.8

7
13 Geochemistry and Mineralogy of Basalts from the South Mid-Atlantic Ridge (18.0 $\hat{A}^{\circ} \hat{a} €^{\text {" } 20.6 \hat{A}^{\circ} \text { S }}$): Evidence of

Origin and tectonic implications of boninite dikes in the Shiquanhe ophiolite, western Bangong Suture, Tibet. Journal of Asian Earth Sciences, 2021, 205, 104594.
2.3

6

Geochemistry, geochronology, and petrogenesis of mid-Cretaceous Talabuco volcanic rocks, central
15 Tibet: implications for the evolution of the Bangong Meso-Tethys. International Geology Review, 2017,
$2.1 \quad 4$
59, 484-501.
Partial Melting and Crustal Deformation during the Early Paleozoic Wuyiâ€"Yunkai Orogeny: Insights
16 from Zircon U-Pb Geochronology and Structural Analysis of the Fuhuling Migmatites in the Yunkai
2.0

Region, South China. Minerals (Basel, Switzerland), 2019, 9, 621.

Physical Modeling and Numerical Simulation of the Seismic Responses of Metro Tunnel near Active
Ground Fissures. Complexity, 2019, 2019, 1-11.
1.6

2

An island arc origin of Jurassic plagiogranite in the Shiquanhe ophiolite, western Bangong Suture,
Tibet: Zircon <scp>Uâ $E^{" P b}$ </scp> chronology, geochemistry, and tectonic implications of Bangong
<scp>Mesoâ€đethys</scp>. Geological Journal, 2021, 56, 3941-3958.

