Volkmar Wolters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6011496/publications.pdf

Version: 2024-02-01

192 papers 13,142 citations

59 h-index 27406 106 g-index

201 all docs

201 docs citations

times ranked

201

13671 citing authors

#	Article	IF	Citations
1	Carabid adaptation to a collembolan diet: hunting efficiency and nutritional value. Ecological Entomology, 2022, 47, 242-248.	2.2	4
2	The Evolution of Ecological Diversity in Acidobacteria. Frontiers in Microbiology, 2022, 13, 715637.	3.5	15
3	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	3.2	19
4	Gebietseigenes Saatgut – Chance oder Risiko für den Biodiversitässchutz? - Ein Thesenpapier zur Umsetzung des § 40 BNatSchG. Naturschutz Und Landschaftsplanung, 2022, 54, 12-21.	0.3	0
5	Soil fauna groups respond differentially to changes in crop rotation cycles in rice production systems. Pedobiologia, 2021, 84, 150703.	1.2	6
6	Forest fire induces shortâ€ŧerm shifts in soil food webs with consequences for carbon cycling. Ecology Letters, 2021, 24, 438-450.	6.4	22
7	Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 2021, 8, 136.	5.3	29
8	Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications, 2021, 12, 3918.	12.8	81
9	Landâ€use intensity and biodiversity effects on infiltration capacity and hydraulic conductivity of grassland soils in southern Germany. Ecohydrology, 2021, 14, e2301.	2.4	5
10	Distribution and pollination services of wild bees and hoverflies along an altitudinal gradient in mountain hay meadows. Ecology and Evolution, 2021, 11, 11345-11351.	1.9	8
11	Hotspots of Agricultural Ecosystem Services and Farmland Biodiversity Overlap with Areas at Risk of Land Abandonment in Japan. Land, 2021, 10, 1031.	2.9	16
12	Spatial configuration and landscape context of wildflower areas determine their benefits to pollinator \hat{l}_{\pm} - and \hat{l}^{2} -diversity. Basic and Applied Ecology, 2021, 56, 335-344.	2.7	14
13	The suitability of sown wildflower strips as hunting grounds for spider-hunting wasps of the genus Trypoxylon depends on landscape context. Journal of Insect Conservation, 2020, 24, 125-131.	1.4	7
14	Landscape associations of farmland bird diversity in Germany and Japan. Global Ecology and Conservation, 2020, 21, e00891.	2.1	16
15	Earthworms offset straw-induced increase of greenhouse gas emission in upland rice production. Science of the Total Environment, 2020, 710, 136352.	8.0	16
16	Deep drilling reveals massive shifts in evolutionary dynamics after formation of ancient ecosystem. Science Advances, 2020, 6, .	10.3	23
17	Convergent evolution of specialized generalists: Implications for phylogenetic and functional diversity of carabid feeding groups. Ecology and Evolution, 2020, 10, 11100-11110.	1.9	10
18	Partitioning Wild Bee and Hoverfly Contributions to Plant–Pollinator Network Structure in Fragmented Habitats. Bulletin of the Ecological Society of America, 2019, 100, e01504.	0.2	0

#	Article	IF	CITATIONS
19	Global distribution of earthworm diversity. Science, 2019, 366, 480-485.	12.6	248
20	Enchytraeids simultaneously stimulate rice straw degradation and mitigate CO2 release in a paddy soil. Soil Biology and Biochemistry, 2019, 131, 191-194.	8.8	13
21	The use of agri-environmental measures to address environmental pressures in Germany: Spatial mismatches and options for improvement. Land Use Policy, 2019, 84, 347-362.	5.6	36
22	Converting arable land into flowering fields changes functional and phylogenetic community structure in ground beetles. Biological Conservation, 2019, 231, 51-58.	4.1	17
23	Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology, 2019, 100, e02569.	3.2	31
24	Kurzdarstellung der Ausgangssituation: Umwelteffekte der Landwirtschaft. , 2019, , 23-56.		0
25	Bausteine zur Integration des Natur- und Umweltschutzes in eine zukunftsfÄ ¤ ige Agrarpolitik. , 2019, , 161-221.		0
26	Policy-Paper: "Ein zukunftsfÃ ¤ iger Gesellschaftsvertrag mit der Landwirtschaft: PlÃ ¤ oyer fÃ⅓r eine neue Agrarpolitik". , 2019, , 13-21.		0
27	Skizzierung und Bewertung umweltpolitischer Strategien fýr eine zukünftige Agrar- und Umweltpolitik. , 2019, , 223-265.		0
28	Preyâ€dependent benefits of sown wildflower strips on solitary wasps in agroecosystems. Insect Conservation and Diversity, 2018, 11, 42-49.	3.0	17
29	GIEßEN: University Collections: Justus Liebig University Gießen. Natural History Collections, 2018, , 373-381.	0.1	21
30	Belowground Tritrophic Food Chain Modulates Soil Respiration in Grasslands. Pedosphere, 2018, 28, 114-123.	4.0	5
31	Attractiveness of wildflower mixtures for wild bees and hoverflies depends on some key plant species. Insect Conservation and Diversity, 2018, 11, 32-41.	3.0	69
32	Spatial correlation of agri-environmental measures with high levels of ecosystem services. Ecological Indicators, 2018, 84, 364-370.	6.3	22
33	Agriâ€environmental schemes affect the trophic niche size and diet of common carabid species in agricultural landscapes. Ecological Entomology, 2018, 43, 823-835.	2.2	8
34	Landâ€use type and intensity differentially filter traits in above―and belowâ€ground arthropod communities. Journal of Animal Ecology, 2017, 86, 511-520.	2.8	62
35	Tradeâ€offs in arthropod conservation between productive and nonâ€productive agriâ€environmental schemes along a landscape complexity gradient. Insect Conservation and Diversity, 2017, 10, 236-247.	3.0	27
36	Bioenergy and biodiversity: Intensified biomass extraction from hedges impairs habitat conditions for birds. Journal of Environmental Management, 2017, 187, 311-319.	7.8	8

3

#	Article	IF	Citations
37	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1	l 0.784314 1.9	rgBT /Over
38	Regional Conditions and Land-Use Alter the Potential Contribution of Soil Arthropods to Ecosystem Services in Grasslands. Frontiers in Ecology and Evolution, 2016, 3, .	2.2	21
39	Regional Patterns of Ecosystem Services in Cultural Landscapes. Land, 2016, 5, 17.	2.9	20
40	Land-use intensification causes multitrophic homogenization of grassland communities. Nature, 2016, 540, 266-269.	27.8	404
41	Much more than bees—Wildflower plantings support highly diverse flower-visitor communities from complex to structurally simple agricultural landscapes. Agriculture, Ecosystems and Environment, 2016, 225, 45-53.	5.3	56
42	Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150269.	4.0	117
43	Intra-specific body size determines pollination effectiveness. Basic and Applied Ecology, 2016, 17, 714-719.	2.7	36
44	Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 2016, 536, 456-459.	27.8	526
45	Organic farming affects the potential of a granivorous carabid beetle to control arable weeds at local and landscape scales. Agricultural and Forest Entomology, 2016, 18, 167-173.	1.3	29
46	Compensatory mechanisms of litter decomposition under alternating moisture regimes in tropical rice fields. Applied Soil Ecology, 2016, 107, 79-90.	4.3	31
47	Intraspecific body size increases with habitat fragmentation in wild bee pollinators. Landscape Ecology, 2016, 31, 1449-1455.	4.2	83
48	Land use at different spatial scales alters the functional role of web-building spiders in arthropod food webs. Agriculture, Ecosystems and Environment, 2016, 219, 152-162.	5.3	28
49	NOTES ON THE ECOLOGY OF THE COLOMBIAN LEAFTOED GECKO (PHYLLODACTYLUS TRANSVERSALIS), ENDEMIC TO MALPELO ISLAND. Boletin De Investigaciones Marinas Y Costeras, 2016, 42, .	0.1	1
50	Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community. PLoS ONE, 2015, 10, e0134402.	2.5	22
51	Landâ€use effects on the functional distinctness of arthropod communities. Ecography, 2015, 38, 889-900.	4.5	67
52	Variability of higher trophic level stable isotope data in space and time - a case study in a marine ecosystem. Rapid Communications in Mass Spectrometry, 2015, 29, 667-674.	1.5	31
53	Optimizing arthropod predator conservation in permanent grasslands by considering diversity components beyond species richness. Agriculture, Ecosystems and Environment, 2015, 211, 65-72.	5.3	34
54	Shifts in Soil Testate Amoeba Communities Associated with Forest Diversification. Microbial Ecology, 2015, 69, 884-894.	2.8	1

#	Article	IF	CITATIONS
55	Earthworm bioturbation stabilizes carbon in non-flooded paddy soil at the risk of increasing methane emissions under wet soil conditions. Soil Biology and Biochemistry, 2015, 91, 127-132.	8.8	14
56	Addition of crop residues affects a detritus-based food chain depending on litter type and farming system. Basic and Applied Ecology, 2015, 16, 746-754.	2.7	13
57	Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 2015, 21, 973-985.	9.5	641
58	Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 308-313.	7.1	243
59	Increased energy maize production reduces farmland bird diversity. GCB Bioenergy, 2014, 6, 265-274.	5.6	40
60	Grassy margins along organically managed cereal fields foster trait diversity and taxonomic distinctness of arthropod communities. Insect Conservation and Diversity, 2014, 7, 274-287.	3.0	34
61	Massâ€flowering crops increase richness of cavityâ€nesting bees and wasps in modern agroâ€ecosystems. GCB Bioenergy, 2014, 6, 219-226.	5.6	71
62	Spruce forest conversion to a mixed beech-coniferous stand modifies oribatid community structure. Applied Soil Ecology, 2014, 76, 60-67.	4.3	17
63	Assessing spider diversity on the forest floor: expert knowledge beats systematic design. Journal of Arachnology, 2014, 42, 44-51.	0.5	9
64	Response of soil biota to manipulation of collembolan biomass. European Journal of Soil Biology, 2014, 60, 53-57.	3.2	2
65	How High Nature Value (HNV) farmland is related to bird diversity in agro-ecosystems – Towards a versatile tool for biodiversity monitoring and conservation planning. Agriculture, Ecosystems and Environment, 2014, 194, 58-64.	5.3	34
66	Management intensity and vegetation complexity affect web-building spiders and their prey. Oecologia, 2013, 173, 579-589.	2.0	93
67	Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a metaâ€analysis. Journal of Applied Ecology, 2013, 50, 262-270.	4.0	74
68	Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14296-14301.	7.1	520
69	Utilization of prey-rich patches leads to reproductive advantages for clustered individuals of a web-building spider. Ecoscience, 2012, 19, 170-176.	1.4	8
70	Spatial distribution of spiders and epedaphic Collembola in an environmentally heterogeneous forest floor habitat. Pedobiologia, 2012, 55, 241-245.	1.2	22
71	General Relationships between Abiotic Soil Properties and Soil Biota across Spatial Scales and Different Land-Use Types. PLoS ONE, 2012, 7, e43292.	2.5	142
72	Traitâ€specific effects of habitat isolation on carabid species richness and community composition in managed grasslands. Insect Conservation and Diversity, 2012, 5, 9-18.	3.0	23

#	Article	IF	Citations
73	The global relationship between climate, net primary production and the diet of spiders. Global Ecology and Biogeography, 2012, 21, 100-108.	5.8	55
74	Early reproductive benefits of mass-flowering crops to the solitary bee Osmia rufa outbalance post-flowering disadvantages. Basic and Applied Ecology, 2012, 13, 268-276.	2.7	80
75	Distance weighting avoids erroneous scale effects in speciesâ€habitat models. Methods in Ecology and Evolution, 2012, 3, 102-111.	5.2	15
76	Arable weeds in organically managed wheat fields foster carabid beetles by resource- and structure-mediated effects. Arthropod-Plant Interactions, 2012, 6, 75-82.	1.1	90
77	Matrix quality and habitat configuration interactively determine functional connectivity in a widespread bush cricket at a small spatial scale. Landscape Ecology, 2012, 27, 381-392.	4.2	13
78	Efficient Placement of Nest Boxes for the Little Owl (Athene noctua). Journal of Raptor Research, 2011, 45, 1-14.	0.6	29
79	Changes in soil faunal assemblages during conversion from pure to mixed forest stands. Forest Ecology and Management, 2011, 262, 317-324.	3.2	52
80	Densityâ€dependent and â€independent effects on the joint use of space by predators and prey in terrestrial arthropod foodâ€webs. Oikos, 2011, 120, 1705-1711.	2.7	22
81	Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness. Soil Biology and Biochemistry, 2011, 43, 2200-2207.	8.8	79
82	Delayed colonisation of arable fields by spring breeding ground beetles (Coleoptera: Carabidae) in landscapes with a high availability of hibernation sites. Agriculture, Ecosystems and Environment, 2011, 144, 235-240.	5.3	31
83	An optimized hair trap for non-invasive genetic studies of small cryptic mammals. European Journal of Wildlife Research, 2011, 57, 991-995.	1.4	19
84	Ring-based versus disc-based separation of spatial scales: a case study on the impact of arable land proportions on invertebrates in freshwater streams. Aquatic Ecology, 2011, 45, 351-356.	1.5	5
85	Landscape and management effects on structure and function of soil arthropod communities in winter wheat. Agriculture, Ecosystems and Environment, 2010, 137, 108-112.	5.3	122
86	Contrasting diversity patterns of epigeic arthropods between grasslands of high and low agronomic potential. Basic and Applied Ecology, 2010, 11, 6-14.	2.7	25
87	Differential threshold effects of habitat fragmentation on gene flow in two widespread species of bush crickets. Molecular Ecology, 2010, 19, 4936-4948.	3.9	34
88	Oilseed rape crops distort plant–pollinator interactions. Journal of Applied Ecology, 2010, 47, 209-214.	4.0	113
89	Evaluating Today's Landscape Multifunctionality and Providing an Alternative Future: A Normative Scenario Approach. Ecology and Society, 2010, 15, .	2.3	27
90	Modelling land-use sustainability using farmland birds as indicators. Ecological Indicators, 2010, 10, 15-23.	6.3	37

#	Article	IF	CITATIONS
91	Impact of microarthropod biomass on the composition of the soil fauna community and ecosystem processes. European Journal of Soil Biology, 2010, 46, 80-86.	3.2	19
92	How do soil fauna and soil microbiota respond to beech forest growth?. Environmental Epigenetics, 2009, 55, 272-278.	1.8	12
93	Nazca Booby (Sula granti) inputs maintain the terrestrial food web of Malpelo Island. Journal of Ornithology, 2009, 150, 865-870.	1.1	8
94	Changes in land use and habitat availability affect the population genetic structure of Metrioptera roeselii (Orthoptera: Tettigoniidae). Journal of Insect Conservation, 2009, 13, 543-552.	1.4	12
95	Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landscape Ecology, 2009, 24, 547-555.	4.2	266
96	Nematoda response to forest conversion. European Journal of Soil Biology, 2009, 45, 184-191.	3.2	13
97	Dynamics of mineral components in the forest floor of an acidic beech (Fagus sylvatica L.) forest. European Journal of Soil Biology, 2009, 45, 285-289.	3.2	14
98	Soil engineering ants increase grass root arbuscular mycorrhizal colonization. Biology and Fertility of Soils, 2008, 44, 791-796.	4.3	33
99	Hover flies are efficient pollinators of oilseed rape. Oecologia, 2008, 156, 819-823.	2.0	147
100	Restoration of Seminatural Grasslands: What is the Impact on Ants?. Restoration Ecology, 2008, 18, 330-337.	2.9	23
101	Global decomposition experiment shows soil animal impacts on decomposition are climateâ€dependent. Global Change Biology, 2008, 14, 2661-2677.	9.5	385
102	Soil macrofaunal response to forest conversion from pure coniferous stands into semi-natural montane forests. Applied Soil Ecology, 2008, 40, 491-498.	4.3	27
103	Soilâ€carbon preservation through habitat constraints and biological limitations on decomposer activity. Journal of Plant Nutrition and Soil Science, 2008, 171, 27-35.	1.9	156
104	Response of collembolan communities to landâ€use change and grassland succession. Ecography, 2007, 30, 183-192.	4.5	63
105	Humus structure during a spruce forest rotation: quantitative changes and relationship to soil biota. European Journal of Soil Science, 2007, 58, 625-631.	3.9	30
106	Impact of agricultural subsidies on biodiversity at the landscape level. Landscape Ecology, 2007, 22, 643-656.	4.2	66
107	Biodiversity at the landscape level: recent concepts and perspectives for multifunctional land use. Landscape Ecology, 2007, 22, 639-642.	4.2	85
108	Assessing the potential distribution of the Caucasian black grouse Tetrao mlokosiewiczi in Turkey through spatial modelling. Journal of Ornithology, 2007, 148, 427-434.	1.1	18

7

#	Article	IF	CITATIONS
109	HABITAT LOSS, TROPHIC COLLAPSE, AND THE DECLINE OF ECOSYSTEM SERVICES. Ecology, 2006, 87, 1915-1924.	3.2	458
110	Long-term succession of oribatid mites after conversion of croplands to grasslands. Applied Soil Ecology, 2006, 34, 230-239.	4.3	46
111	The ant LasiusÂflavus alters theÂviable seed bank inÂpastures. European Journal of Soil Biology, 2006, 42, S157-S163.	3.2	20
112	Geographic determinants ofÂoribatid mite communities structure andÂdiversity across Europe: aÂlongitudinal perspective. European Journal of Soil Biology, 2006, 42, S358-S361.	3.2	9
113	Increased density of honeybee colonies affects foraging bumblebees. Apidologie, 2006, 37, 517-532.	2.0	65
114	Impact of summer drought on forest biodiversity: what do we know?. Annals of Forest Science, 2006, 63, 645-652.	2.0	120
115	AGE-RELATED VARIATION IN PHYSICAL AND REPRODUCTIVE CONDITION OF MALE DAUBENTON'S BATS (MYOTIS DAUBENTONII). Journal of Mammalogy, 2006, 87, 93-96.	1.3	17
116	Landscape Effects on the Genetic Structure of the Ground Beetle Poecilus Versicolor STURM 1824. Biodiversity and Conservation, 2006, 15, 245-259.	2.6	8
117	Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landscape Ecology, 2006, 21, 891-899.	4.2	72
118	Landscape genetics of the widespread ground-beetle Carabus auratus in an agricultural region. Basic and Applied Ecology, 2006, 7, 555-564.	2.7	18
119	Soil fauna modifies the recalcitrance-persistence relationship of soil carbon pools. Soil Biology and Biochemistry, 2006, 38, 1353-1363.	8.8	57
120	Landscape effects on the genetic structure of the ground beetle Poecilus versicolor STURM 1824. , 2006, , 231-245.		2
121	RELATIONSHIP AMONG THE SPECIES RICHNESS OF DIFFERENT TAXA. Ecology, 2006, 87, 1886-1895.	3.2	205
122	Landscape context of organic and conventional farms: Influences on carabid beetle diversity. Agriculture, Ecosystems and Environment, 2005, 108, 165-174.	5. 3	223
123	Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility. Global Ecology and Biogeography, 2005, 14, 213-221.	5.8	132
124	The microfood web of grassland soils responds to a moderate increase in atmospheric CO2. Global Change Biology, 2005, 11, 1148-1155.	9.5	35
125	Colonization of temperate grassland by ants. Basic and Applied Ecology, 2005, 6, 83-91.	2.7	54
126	Root associated organisms modify the effectiveness of chemically induced resistance in barley. Soil Biology and Biochemistry, 2005, 37, 1837-1842.	8.8	18

#	Article	IF	Citations
127	Responses of oribatid mite communities to summer drought: The influence of litter type and quality. Soil Biology and Biochemistry, 2005, 37, 2117-2130.	8.8	43
128	The response of carabids to landscape simplification differs between trophic groups. Oecologia, 2005, 142, 458-464.	2.0	121
129	The Effects of Spatial Scale on Trophic Interactions. Ecosystems, 2005, 8, 801-807.	3.4	32
130	ECOLOGY: Food Web Ecology: Playing Jenga and Beyond. Science, 2005, 309, 68-71.	12.6	146
131	Strategies used by soil biota to overcome soil organic matter stability — why is dead organic matter left over in the soil?. Geoderma, 2005, 128, 167-176.	5.1	194
132	Scaling properties of multivariate landscape structure. Ecological Indicators, 2005, 5, 295-304.	6.3	30
133	SPATIAL ASPECTS OF FOOD WEBS., 2005, , 463-469.		17
134	Body mass changes in male Daubenton's bats <i>Myotis daubentonii</i> (Chiroptera, Vespertilionidae) during the seasonal activity period. Mammalia, 2004, 68, 291-297.	0.7	18
135	Response of different decomposer communities to the manipulation of moisture availability: potential effects of changing precipitation patterns. Global Change Biology, 2004, 10, 1313-1324.	9.5	59
136	Limitations of faunal effects on soil carbon flow: density dependence, biotic regulation and mutual inhibition. Soil Biology and Biochemistry, 2004, 36, 387-397.	8.8	28
137	Trophic interactions in a changing world. Basic and Applied Ecology, 2004, 5, 487-494.	2.7	151
138	Edge effects on ant community structure and species richness in an agricultural landscape. Biodiversity and Conservation, 2004, 13, 901-915.	2.6	75
139	Carabid communities in the spatio-temporal mosaic of a rural landscape. Landscape and Urban Planning, 2004, 67, 185-193.	7.5	49
140	Successional changes of Collembola and soil microbiota during forest rotation. Oecologia, 2003, 137, 269-276.	2.0	78
141	On the quality of soil biodiversity indicators: abiotic and biotic parameters as predictors of soil faunal richness at different spatial scales. Agriculture, Ecosystems and Environment, 2003, 98, 273-283.	5.3	37
142	Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agriculture, Ecosystems and Environment, 2003, 98, 321-329.	5. 3	240
143	The influence of matrix type on flower visitors of Centaurea jacea L Agriculture, Ecosystems and Environment, 2003, 98, 331-337.	5.3	24
144	Design and evaluation of nematode 18S rDNA primers for PCR and denaturing gradient gel electrophoresis (DGGE) of soil community DNA. Soil Biology and Biochemistry, 2003, 35, 1165-1173.	8.8	68

#	Article	IF	Citations
145	C and N mineralisation in the decomposer food webs of a European forest transect. Oikos, 2003, 102, 294-308.	2.7	122
146	Isolation and characterization of microsatellite loci in the ant Myrmica scabrinodis. Molecular Ecology Notes, 2003, 3, 304-306.	1.7	12
147	Response of aculeate Hymenoptera to spatial features of an agricultural landscape. Journal for Nature Conservation, 2003, 11 , $179-185$.	1.8	9
148	PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biology and Biochemistry, 2002, 34, 189-200.	8.8	162
149	Oribatid mite diversity and community dynamics in a spruce chronosequence. Soil Biology and Biochemistry, 2002, 34, 1919-1927.	8.8	59
150	Rove beetles of the subtribe Scopaeina Mulsant & Rey (Coleoptera: Staphylinidae) in the West Palaearctic: Phylogeny, biogeography and species catalogue. Organisms Diversity and Evolution, 2002, 2, 27-53.	1.6	20
151	Collembola communities along a European transect. European Journal of Soil Biology, 2002, 38, 301-304.	3.2	16
152	Does induced resistance in plants affect the belowground community?. Applied Soil Ecology, 2002, 21, 179-185.	4.3	24
153	Biodiversity of soil animals and its function. European Journal of Soil Biology, 2001, 37, 221-227.	3.2	164
154	Species specific effects of ants on microbial activity and N-availability in the soil of an old-field. European Journal of Soil Biology, 2001, 37, 259-261.	3.2	37
155	Nematode community structure as indicator of soil functioning in European grassland soils. European Journal of Soil Biology, 2001, 37, 263-268.	3.2	93
156	Influence of drought and litter age on Collembola communities. European Journal of Soil Biology, 2001, 37, 305-308.	3.2	62
157	Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought. Soil Biology and Biochemistry, 2001, 33, 583-591.	8.8	56
158	Biodiversity and functioning of ecological communities â€" why is diversity important in some cases and unimportant in others?. Journal of Plant Nutrition and Soil Science, 2001, 164, 239-246.	1.9	24
159	Terrestrial ecosystem research in Europe: lessons from the European Union's research projects 1996–2000. Environmental Science and Policy, 2001, 4, 51-58.	4.9	1
160	Invertebrate control of soil organic matter stability. Biology and Fertility of Soils, 2000, 31, 1-19.	4.3	263
161	Effects of Global Changes on Above- and Belowground Biodiversity in Terrestrial Ecosystems: Implications for Ecosystem Functioning. BioScience, 2000, 50, 1089.	4.9	165
162	Microbial activity and functional diversity in the mounds of three different ant species. Soil Biology and Biochemistry, 2000, 32, 93-99.	8.8	88

#	Article	IF	Citations
163	Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems: Patterns, Mechanisms, and Feedbacks. BioScience, 2000, 50, 1049.	4.9	614
164	Title is missing!. Plant and Soil, 1999, 212, 45-61.	3.7	52
165	Response of soil microflora to changes in nematode abundance $\hat{a} \in \mathbb{R}^n$ evidence for large scale effects in grassland soil+. Journal of Plant Nutrition and Soil Science, 1999, 162, 385-391.	1.9	10
166	The effects of different tillage practices on soil mites, with particular reference to Oribatida. Applied Soil Ecology, 1998, 9, 327-332.	4.3	38
167	Long-term dynamics of a collembolan community. Applied Soil Ecology, 1998, 9, 221-227.	4.3	40
168	Mycorrhizal colonization and lead distribution in root tissues of Norway spruce seedlings. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1997, 160, 317-321.	0.4	9
169	Total carbohydrates of the soil microbial biomass in 0.5 M K2SO4 soil extracts. Soil Biology and Biochemistry, 1996, 28, 1147-1153.	8.8	36
170	Earthworm effects on the use of C sources by microorganisms: Non-linear response to temperature alteration. Biology and Fertility of Soils, 1995, 19, 109-114.	4.3	8
171	Carbon and nitrogen relationships in the microbial biomass of soils in beech (Fagus sylvatica L.) forests. Biology and Fertility of Soils, 1995, 19, 141-147.	4.3	139
172	Examination of microbial biomass in beech forest moder profiles. Biology and Fertility of Soils, 1995, 19, 209-214.	4.3	18
173	Microbial biomass phosphorus in soils of beech (Fagus sylvatica L.) forests. Biology and Fertility of Soils, 1995, 19, 215-219.	4.3	108
174	Microbial immobilization and recycling of 137Cs in the organic layers of forest ecosystems: relationship to environmental conditions, humification and invertebrate activity. Science of the Total Environment, 1994, 157, 249-256.	8.0	82
175	Hexosamines in the organic layer of two beech forest soils: effects of mesofauna exclusion. Biology and Fertility of Soils, 1993, 15, 301-307.	4.3	15
176	Soil microbial biomass estimated by fumigation-extraction and substrate-induced respiration in two pesticide-treated soils. Soil Biology and Biochemistry, 1993, 25, 679-683.	8.8	37
177	Mineralization of straw and formation of soil microbial biomass in a soil treated with simazine and dinoterb. Soil Biology and Biochemistry, 1993, 25, 1273-1276.	8.8	32
178	Microbial carbon turnover in beech forest soils worked by Aporrectodea caliginosa (Savigny) (Oligochaeta:Lumbricidae). Soil Biology and Biochemistry, 1992, 24, 171-177.	8.8	92
179	Effects of mesofauna exclusion on the microbial biomass in two moder profiles. Biology and Fertility of Soils, 1992, 12, 253-260.	4.3	41
180	Soil Invertebrates - Effects on Nutrient Turnover and Soil Structure - A Review. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1991, 154, 389-402.	0.4	70

#	Article	IF	CITATIONS
181	Influence of fragmentation and bioturbation on the decomposition of 14C-labelled beech leaf litter. Soil Biology and Biochemistry, 1991, 23, 1029-1034.	8.8	117
182	Microbial carbon turnover in beech forest soils at different stages of acidification. Soil Biology and Biochemistry, 1991, 23, 897-902.	8.8	105
183	Biological processes in two beech forest soils treated with simulated acid rainâ€"a laboratory experiment with Isotoma tigrina (insecta, collembola). Soil Biology and Biochemistry, 1991, 23, 381-390.	8.8	58
184	Resource allocation of beech seedlings (Fagus sylvatica L.) ?relationship to earthworm activity and soil conditions. Oecologia, 1991, 88, 125-131.	2.0	29
185	Buffering of the effect of acid rain on decomposition of C-14-labelled beech leaf litter by saprophagous invertebrates. Biology and Fertility of Soils, 1991, 11, 285-289.	4.3	11
186	Effects of acid rain on leaf-litter decomposition in a beech forest on calcareous soil. Biology and Fertility of Soils, 1991, 11, 151-156.	4.3	26
187	The influence of omnivorous elaterid larvae on the microbial carbon cycle in different forest soils. Oecologia, 1989, 80, 405-413.	2.0	41
188	Resource allocation in Tomocerus flavescens (Insecta, Collembola): a study with C-14-labelled food. Oecologia, 1985, 65, 229-235.	2.0	18
189	Ecosystem servicesââ,¬â€current challenges and opportunities for ecological research. Frontiers in Ecology and Evolution, 0, 2, .	2.2	127
190	Global Metawebs of Spider Predation Highlight Consequences of Land-Use Change for Terrestrial Predator–Prey Networks. , 0, , 193-213.		3
191	Contrasting pollination efficiency and effectiveness among flower visitors of <i>Malva sylvestris, Borago officinalis</i> and <i>Onobrychis viciifolia</i> Journal of Pollination Ecology, 0, 21, .	0.5	11
192	Fertilization Rapidly Alters the Feeding Activity of Grassland Soil Mesofauna Independent of Management History. Frontiers in Ecology and Evolution, 0, 10 , .	2.2	4