
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6010823/publications.pdf Version: 2024-02-01

FENC LIANC

#	Article	IF	CITATIONS
1	Promoting Homogeneous Interfacial Li ⁺ Migration by Using a Facile N ₂ Plasma Strategy for Allâ€Solidâ€State Lithiumâ€Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	11
2	Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte. Materials, 2022, 15, 1157.	2.9	10
3	Rational Design of Electrolyte Solvation Structures for Modulating 2e ^{â^'} /4e ^{â^'} Transfer in Sodium–Air Batteries. Advanced Functional Materials, 2022, 32, .	14.9	21
4	Activated carbon prepared from waste tire pyrolysis carbon black via CO2/KOH activation used as supercapacitor electrode. Science China Technological Sciences, 2022, 65, 2337-2347.	4.0	10
5	Inhibitive role of crystal water on lithium storage for multilayer FeC2O4·xH2O anode materials. Chemical Engineering Journal, 2021, 404, 126464.	12.7	26
6	An encapsulation of phosphorus doped carbon over LiFePO4 prepared under vacuum condition for lithium-ion batteries. Vacuum, 2021, 184, 109935.	3.5	20
7	Iron-modulated nickel cobalt phosphide embedded in carbon to boost power density of hybrid sodium–air battery. Applied Catalysis B: Environmental, 2021, 285, 119786.	20.2	32
8	Plasma tailored reactive nitrogen species in MOF derived carbon materials for hybrid sodium–air batteries. Dalton Transactions, 2021, 50, 7041-7047.	3.3	21
9	Dense binary Fe–Cu sites promoting CO ₂ utilization enable highly reversible hybrid Na–CO ₂ batteries. Journal of Materials Chemistry A, 2021, 9, 22114-22128.	10.3	17
10	A strategy and detailed explanations to the composites of Si/MWCNTs for lithium storage. Carbon, 2021, 171, 265-275.	10.3	19
11	Highly sensitive electrochemical sensor based on Pt nanoparticles/carbon nanohorns for simultaneous determination of morphine and MDMA in biological samples. Electrochimica Acta, 2021, 370, 137803.	5.2	30
12	Effect of vacuum assistance on the morphology and electrochemical properties of LiMn0.2Fe0.8PO4/C composites prepared by solid-phase method. Electrochimica Acta, 2021, 369, 137675.	5.2	6
13	Hydrogen-induced marginal growth model for the synthesis of graphene by arc discharge. Science China Technological Sciences, 2021, 64, 1074-1080.	4.0	3
14	Highâ€Performance Quasiâ€Solidâ€State Naâ€Air Battery via Gel Cathode by Confining Moisture. Advanced Functional Materials, 2021, 31, 2011151.	14.9	23
15	Nanostructured arrays for metal–ion battery and metal–air battery applications. Journal of Power Sources, 2021, 493, 229722.	7.8	22
16	Recent Development of Electrocatalytic CO ₂ Reduction Application to Energy Conversion. Small, 2021, 17, e2100323.	10.0	53
17	Multiscale Investigation into Chemically Stable NASICON Solid Electrolyte in Acidic Solutions. ACS Applied Materials & Interfaces, 2021, 13, 33262-33271.	8.0	10
18	Controlled regulation of the transformation of carbon nanomaterials under H2 mixture atmosphere by arc plasma. Chemical Engineering Science, 2021, 241, 116695.	3.8	6

#	Article	IF	CITATIONS
19	Biological enzyme treatment of starch-based lithium-ion battery silicon-carbon composite. Nanotechnology, 2021, 32, 045605.	2.6	9
20	Perspective on Micro-Supercapacitors. Frontiers in Chemistry, 2021, 9, 807500.	3.6	14
21	Study on Factors of Vanadium Extraction from Low-Grade Vanadium Slag with High Silicon Content by Roasting. Silicon, 2020, 12, 1691-1698.	3.3	8
22	Toward materials-by-design: achieving functional materials with physical and chemical effects. Nanotechnology, 2020, 31, 024002.	2.6	3
23	High-capacity flour-based nano-Si/C composite anode materials for lithium-ion batteries. Ionics, 2020, 26, 1-11.	2.4	43
24	Enhancing the rate performance of high-capacity LiNi0.8Co0.15Al0.05O2 cathode materials by using Ti4O7 as a conductive additive. Journal of Energy Storage, 2020, 28, 101182.	8.1	10
25	La ³⁺ :Ni–Cl oxyhydroxide gels with enhanced electroactivity as positive materials for hybrid supercapacitors. Dalton Transactions, 2020, 49, 1107-1115.	3.3	8
26	FeC2O4@Fe2O3/rGO composites with a novel interfacial characteristic and enhanced ultrastable lithium storage performance. Applied Surface Science, 2020, 507, 145051.	6.1	18
27	Highly dispersed Co nanoparticles decorated on a N-doped defective carbon nano-framework for a hybrid Na–air battery. Dalton Transactions, 2020, 49, 1811-1821.	3.3	43
28	Reversible hybrid sodium-CO2 batteries with low charging voltage and long-life. Nano Energy, 2020, 68, 104318.	16.0	70
29	Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries. Nanotechnology, 2020, 31, 132003.	2.6	145
30	Investigation of the stability of NASICON-type solid electrolyte in neutral-alkaline aqueous solutions. Corrosion Science, 2020, 177, 109012.	6.6	15
31	Unveiling the Origin of Catalytic Sites of Pt Nanoparticles Decorated on Oxygen-Deficient Vanadium-Doped Cobalt Hydroxide Nanosheet for Hybrid Sodium–Air Batteries. ACS Applied Energy Materials, 2020, 3, 7464-7473.	5.1	9
32	Concentration-Controlled and Phytic Acid-Assisted Synthesis of Self-Assembled LiFePO ₄ as Cathode Materials for Lithium-Ion Battery. Nano, 2020, 15, 2050003.	1.0	6
33	Nanocrystalline coatings and their electrochemical energy storage applications. Functional Materials Letters, 2020, 13, 2030001.	1.2	4
34	Garnet-type solid-state electrolytes and interfaces in all-solid-state lithium batteries: progress and perspective. Applied Materials Today, 2020, 20, 100750.	4.3	17
35	A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance. Nanotechnology, 2020, 31, 425401.	2.6	27
36	Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors. Nature Communications, 2020, 11, 299.	12.8	55

#	Article	IF	CITATIONS
37	Synthesis mechanism and characterization of LiMn0.5Fe0.5PO4/C composite cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 839, 155653.	5.5	23
38	Review on development of carbon nanotube field emission cathode for space propulsion systems. High Voltage, 2020, 5, 409-415.	4.7	20
39	The Transition from Amorphous Carbon to Carbon Nanohorns by DC Arc Discharge. Minerals, Metals and Materials Series, 2020, , 735-741.	0.4	0
40	Investigation of Ph on Electrochemical Performances of Ni-Rich NCM Cathode Material Precursor. IOP Conference Series: Earth and Environmental Science, 2019, 252, 022053.	0.3	1
41	Intercalation and exfoliation syntheses of high specific surface area graphene and FeC ₂ O ₄ /graphene composite for anode material of lithium ion battery. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 746-754.	2.1	12
42	Controlling the Precursor Morphology of Ni-Rich Li(Ni _{0.8} Co _{0.1} Mn _{0.1})O ₂ Cathode for Lithium-Ion Battery. Nano, 2019, 14, 1950103.	1.0	6
43	A novel approach to synthesize porous graphene by the transformation and deoxidation of oxygen-containing functional groups. Chinese Chemical Letters, 2019, 30, 2313-2317.	9.0	5
44	A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries. Applied Catalysis B: Environmental, 2019, 241, 407-414.	20.2	92
45	Multilayer iron oxalate with a mesoporous nanostructure as a high-performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 779, 91-99.	5.5	19
46	Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon, 2019, 142, 278-284.	10.3	95
47	Enhancing potassium-ion battery performance by defect and interlayer engineering. Nanoscale Horizons, 2019, 4, 202-207.	8.0	105
48	Concentration-controlled morphology of LiFePO4 crystals with an exposed (100) facet and their enhanced performance for use in lithium-ion batteries. Journal of Alloys and Compounds, 2018, 743, 763-772.	5.5	32
49	A novel process for leaching of metals from LiNi1/3Co1/3Mn1/3O2 material of spent lithium ion batteries: Process optimization and kinetics aspects. Journal of Industrial and Engineering Chemistry, 2018, 61, 133-141.	5.8	55
50	Microwave-Irradiation-Assisted Combustion toward Modified Graphite as Lithium Ion Battery Anode. ACS Applied Materials & Interfaces, 2018, 10, 909-914.	8.0	53
51	A liquid anode for rechargeable sodium-air batteries with low voltage gap and high safety. Nano Energy, 2018, 49, 574-579.	16.0	57
52	Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 1513-1522.	10.3	198
53	Preparation of Nickel Nanoparticles by Direct Current Arc Discharge Method and Their Catalytic Application in Hybrid Na-Air Battery. Nanomaterials, 2018, 8, 684.	4.1	16
54	Novel High-Energy-Density Rechargeable Hybrid Sodium–Air Cell with Acidic Electrolyte. ACS Applied Materials & Interfaces, 2018, 10, 23748-23756.	8.0	22

#	Article	IF	CITATIONS
55	Influence of sintering temperature on the morphology and cycle performance of nanoscale porous materials LiFe0.75Mn0.25PO4/C. Journal of Energy Storage, 2018, 19, 226-231.	8.1	3
56	Research Progress of Metallic Carbon Dioxide Batteries. Acta Chimica Sinica, 2018, 76, 515.	1.4	4
57	Formation of different arc-anode attachment modes and their effect on temperature fluctuation for carbon nanomaterial production in DC arc discharge. Carbon, 2017, 117, 100-111.	10.3	26
58	High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinlycarbazole) as a hole-transporting layer. Journal of Materials Chemistry C, 2017, 5, 5372-5377.	5.5	57
59	Dual–phase Spinel MnCo 2 O 4 Nanocrystals with Nitrogen-doped Reduced Graphene Oxide as Potential Catalyst for Hybrid Na–Air Batteries. Electrochimica Acta, 2017, 244, 222-229.	5.2	52
60	Thermal stability of LiFePO4/C-LiMn2O4 blended cathode materials. Science China Technological Sciences, 2017, 60, 58-64.	4.0	6
61	Improved electrochemical performance of LiFe0.65Mn0.35PO4 cathode material by using electrolytic manganese dioxide for lithium-ion battery. Science China Technological Sciences, 2017, 60, 1853-1860.	4.0	4
62	Optimized solvothermal synthesis of LiFePO4 cathode material for enhanced high-rate and low temperature electrochemical performances. Electrochimica Acta, 2017, 258, 1149-1159.	5.2	16
63	Comparison of the effects of FePO4 and FePO4·2H2O as precursors on the electrochemical performances of LiFePO4/C. Ceramics International, 2017, 43, 13254-13263.	4.8	24
64	Liquid exfoliation graphene sheets as catalysts for hybrid sodium-air cells. Materials Letters, 2017, 187, 32-35.	2.6	17
65	Optimization of the Process Parameters for the Synthesis of LiFe1â^'xâ^'yMgxTiyPO4/C Cathode Material Using Response Surface Methodology. Nano, 2016, 11, 1650122.	1.0	6
66	Investigation of the relationship between arc-anode attachment mode and anode temperature for nickel nanoparticle production by a DC arc discharge. Journal Physics D: Applied Physics, 2016, 49, 125201.	2.8	14
67	Hybrid Sodium–Air Cell with Na[FSA–C2C1im][FSA] Ionic Liquid Electrolyte. Electrochimica Acta, 2016, 218, 119-124.	5.2	24
68	Preparation of porous-structured LiFePO4/C composite by vacuum sintering for lithium-ion battery. Ceramics International, 2016, 42, 18303-18311.	4.8	20
69	A High-Energy-Density Mixed-Aprotic-Aqueous Sodium-Air Cell with a Ceramic Separator and a Porous Carbon Electrode. Journal of the Electrochemical Society, 2015, 162, A1215-A1219.	2.9	58
70	Measurement of anode surface temperature in carbon nanomaterial production by arc discharge method. Materials Research Bulletin, 2014, 60, 158-165.	5.2	18
71	Investigation of Carbon Nanomaterials Growth on Anode Surface by Arc Discharge Method. Journal of Chemical Engineering of Japan, 2014, 47, 296-300.	0.6	5
72	Preparation of Polyhedral Graphite Particles by Arc Discharge under Atmospheric Pressure. Japanese Journal of Applied Physics, 2013, 52, 01AK01.	1.5	4

#	Article	IF	CITATIONS
73	Selective preparation of polyhedral graphite particles and multi-wall carbon nanotubes by a transferred arc under atmospheric pressure. Diamond and Related Materials, 2012, 30, 70-76.	3.9	29
74	Preparation of porous structure LiFePO4/C composite by template method for lithium-ion batteries. Solid State Ionics, 2012, 214, 31-36.	2.7	17
75	Metal Nanoparticle Production by Anode Jet of Argon-Hydrogen DC Arc. Advanced Materials Research, 0, 628, 11-14.	0.3	5
76	Effect on ionic conductivity of Na _{3+x} Zr _{2-x} M _x Si ₂ PO ₁₂ (M=Y, La) by doping rare-earth elements. IOP Conference Series: Materials Science and Engineering, 0, 423, 012122.	0.6	11
77	B-Mg co-doping behavior of LiFePO4 cathode material: balance of oxygen vacancy and enhancement of electrochemical performance. Ionics, 0, , 1.	2.4	6