## Jan Schuemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6010786/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | TOPAS: An innovative proton Monte Carlo platform for research and clinical applications. Medical Physics, 2012, 39, 6818-6837.                                                                       | 1.6  | 694       |
| 2  | A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published <i>in vitro</i> cell survival data. Physics in Medicine and Biology, 2015, 60, 8399-8416. | 1.6  | 246       |
| 3  | Range uncertainty in proton therapy due to variable biological effectiveness. Physics in Medicine and<br>Biology, 2012, 57, 1159-1172.                                                               | 1.6  | 197       |
| 4  | Roadmap to Clinical Use of Gold Nanoparticles for Radiation Sensitization. International Journal of<br>Radiation Oncology Biology Physics, 2016, 94, 189-205.                                        | 0.4  | 182       |
| 5  | Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and<br>kilovoltage photons: a Monte Carlo simulation. Physics in Medicine and Biology, 2014, 59, 7675-7689.     | 1.6  | 139       |
| 6  | The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Physica Medica, 2020, 72, 114-121.                                                 | 0.4  | 126       |
| 7  | TOPAS-nBio: An Extension to the TOPAS Simulation Toolkit for Cellular and Sub-cellular Radiobiology.<br>Radiation Research, 2018, 191, 125.                                                          | 0.7  | 124       |
| 8  | Biological modeling of gold nanoparticle enhanced radiotherapy for proton therapy. Physics in<br>Medicine and Biology, 2015, 60, 4149-4168.                                                          | 1.6  | 110       |
| 9  | Measurement of Branching Fractions and Polarization inB→݆K(*)Decays. Physical Review Letters, 2003, 91,<br>201801.                                                                                   | 2.9  | 109       |
| 10 | Site-specific range uncertainties caused by dose calculation algorithms for proton therapy. Physics in<br>Medicine and Biology, 2014, 59, 4007-4031.                                                 | 1.6  | 103       |
| 11 | Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Physics in Medicine and Biology, 2020, 65, 21RM02.                            | 1.6  | 101       |
| 12 | Difference in direct charge-parity violation between charged and neutral B meson decays. Nature, 2008, 452, 332-335.                                                                                 | 13.7 | 99        |
| 13 | Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy.<br>Medical Physics, 2013, 40, 121719.                                                                 | 1.6  | 97        |
| 14 | Evidence for the Appearance of Atmospheric Tau Neutrinos in Super-Kamiokande. Physical Review<br>Letters, 2013, 110, 181802.                                                                         | 2.9  | 78        |
| 15 | Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy.<br>International Journal of Radiation Oncology Biology Physics, 2015, 92, 1157-1164.             | 0.4  | 75        |
| 16 | Mechanistic Modelling of DNA Repair and Cellular Survival Following Radiation-Induced DNA Damage.<br>Scientific Reports, 2016, 6, 33290.                                                             | 1.6  | 72        |
| 17 | Validation of the radiobiology toolkit TOPAS-nBio in simple DNA geometries. Physica Medica, 2017, 33, 207-215.                                                                                       | 0.4  | 70        |
| 18 | Dependence of gold nanoparticle radiosensitization on cell geometry. Nanoscale, 2017, 9, 5843-5853.                                                                                                  | 2.8  | 61        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                     | IF                                               | CITATIONS             |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------|
| 19 | Dosimetric feasibility of realâ€ŧime MRIâ€guided proton therapy. Medical Physics, 2014, 41, 111713.                                                                                                                                                                                                                                                                                                                         | 1.6                                              | 60                    |
| 20 | Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio. Physics in Medicine and Biology, 2018, 63, 105014.                                                                                                                                                                                                                                                                                                | 1.6                                              | 58                    |
| 21 | Extension of TOPAS for the simulation of proton radiation effects considering molecular and cellular endpoints. Physics in Medicine and Biology, 2015, 60, 5053-5070.                                                                                                                                                                                                                                                       | 1.6                                              | 56                    |
| 22 | A general mechanistic model enables predictions of the biological effectiveness of different qualities of radiation. Scientific Reports, 2017, 7, 10790.                                                                                                                                                                                                                                                                    | 1.6                                              | 50                    |
| 23 | Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol.<br>Physics in Medicine and Biology, 2016, 61, 5993-6010.                                                                                                                                                                                                                                                                   | 1.6                                              | 49                    |
| 24 | A New Standard DNA Damage (SDD) Data Format. Radiation Research, 2018, 191, 76.<br>Search for Nucleon Decay via comfitmath xmins:mml="http://www.waj.org/1998/Math/MathML"                                                                                                                                                                                                                                                  | 0.7                                              | 49                    |
| 25 | display= inline > <mml:mi>n</mml:mi> <mml:mo stretcny="faise">af </mml:mo> <mml:mover<br>accent="true"&gt;<mml:mi>î½</mml:mi><mml:mo<br>stretchy="false"&gt;Â⁻<mml:msup><mml:mi>ï€</mml:mi><mml:mi>Oxmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"&gt;<mml:mi>p</mml:mi><mml:mo< td=""><td>:ms<b>քֈ9</b>&gt; <td>nm<b>la</b>sath&gt;and</td></td></mml:mo<></mml:mi></mml:msup></mml:mo<br></mml:mover<br> | :ms <b>քֈ9</b> > <td>nm<b>la</b>sath&gt;and</td> | nm <b>la</b> sath>and |
| 26 | Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons. Medical Physics, 2015, 42, 5890-5902.                                                                                                                                                                                                                                                                                 | 1.6                                              | 43                    |
| 27 | Brain Necrosis in Adult Patients After Proton Therapy: Is There Evidence for Dependency on Linear<br>Energy Transfer?. International Journal of Radiation Oncology Biology Physics, 2021, 109, 109-119.                                                                                                                                                                                                                     | 0.4                                              | 43                    |
| 28 | Validation of a GPU-based Monte Carlo code (gPMC) for proton radiation therapy: clinical cases study.<br>Physics in Medicine and Biology, 2015, 60, 2257-2269.                                                                                                                                                                                                                                                              | 1.6                                              | 42                    |
| 29 | Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles<br>irradiated by X-rays calculated using multiple Monte Carlo simulation codes. Physica Medica, 2020, 69,<br>147-163.                                                                                                                                                                                                       | 0.4                                              | 42                    |
| 30 | LET-Dependent Intertrack Yields in Proton Irradiation at Ultra-High Dose Rates Relevant for FLASH<br>Therapy. Radiation Research, 2020, 194, 351-362.                                                                                                                                                                                                                                                                       | 0.7                                              | 39                    |
| 31 | Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit.<br>Physics in Medicine and Biology, 2018, 63, 175018.                                                                                                                                                                                                                                                                       | 1.6                                              | 36                    |
| 32 | Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams. Physics in Medicine and Biology, 2019, 64, 175005.                                                                                                                                                                                                                                                     | 1.6                                              | 36                    |
| 33 | Assessing the radiation-induced second cancer risk in proton therapy for pediatric brain tumors: the impact of employing a patient-specific aperture in pencil beam scanning. Physics in Medicine and Biology, 2016, 61, 12-22.                                                                                                                                                                                             | 1.6                                              | 34                    |
| 34 | Determining the Radiation Enhancement Effects of Gold Nanoparticles in Cells in a Combined<br>Treatment with Cisplatin and Radiation at Therapeutic Megavoltage Energies. Cancers, 2018, 10, 150.                                                                                                                                                                                                                           | 1.7                                              | 33                    |
| 35 | Recent developments and comprehensive evaluations of a GPU-based Monte Carlo package for proton therapy. Physics in Medicine and Biology, 2016, 61, 7347-7362.                                                                                                                                                                                                                                                              | 1.6                                              | 32                    |
| 36 | A parameter sensitivity study for simulating DNA damage after proton irradiation using TOPAS-nBio.<br>Physics in Medicine and Biology, 2020, 65, 085015.                                                                                                                                                                                                                                                                    | 1.6                                              | 31                    |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Cellular Response to Proton Irradiation: A Simulation Study with TOPAS-nBio. Radiation Research, 2020, 194, 9.                                                                                                                | 0.7 | 30        |
| 38 | The microdosimetric extension in TOPAS: development and comparison with published data. Physics in Medicine and Biology, 2019, 64, 145004.                                                                                    | 1.6 | 26        |
| 39 | Search for GUT monopoles at Super–Kamiokande. Astroparticle Physics, 2012, 36, 131-136.                                                                                                                                       | 1.9 | 25        |
| 40 | An algorithm to assess the need for clinical Monte Carlo dose calculation for small proton therapy fields based on quantification of tissue heterogeneity. Medical Physics, 2013, 40, 081704.                                 | 1.6 | 24        |
| 41 | Modulation of nanoparticle uptake, intracellular distribution, and retention with docetaxel to enhance radiotherapy. British Journal of Radiology, 2020, 93, 20190742.                                                        | 1.0 | 24        |
| 42 | Automated Monte Carlo Simulation of Proton Therapy Treatment Plans. Technology in Cancer<br>Research and Treatment, 2016, 15, NP35-NP46.                                                                                      | 0.8 | 23        |
| 43 | Use of a lipid nanoparticle system as a Trojan horse in delivery of gold nanoparticles to human breast cancer cells for improved outcomes in radiation therapy. Cancer Nanotechnology, 2019, 10, .                            | 1.9 | 21        |
| 44 | Intercomparison of Monte Carlo calculated dose enhancement ratios for gold nanoparticles<br>irradiated by X-rays: Assessing the uncertainty and correct methodology for extended beams. Physica<br>Medica, 2021, 84, 241-253. | 0.4 | 20        |
| 45 | Biological and dosimetric characterisation of spatially fractionated proton minibeams. Physics in<br>Medicine and Biology, 2017, 62, 9260-9281.                                                                               | 1.6 | 18        |
| 46 | Improving proton dose calculation accuracy by using deep learning. Machine Learning: Science and Technology, 2021, 2, 015017.                                                                                                 | 2.4 | 16        |
| 47 | TOPAS-nBio validation for simulating water radiolysis and DNA damage under low-LET irradiation.<br>Physics in Medicine and Biology, 2021, 66, 175026.                                                                         | 1.6 | 16        |
| 48 | Relative biological effectiveness (RBE) and out-of-field cell survival responses to passive scattering<br>and pencil beam scanning proton beam deliveries. Physics in Medicine and Biology, 2012, 57, 6671-6680.              | 1.6 | 15        |
| 49 | Computational Modeling and Clonogenic Assay for Radioenhancement of Gold Nanoparticles Using 3D<br>Live Cell Images. Radiation Research, 2018, 190, 558.                                                                      | 0.7 | 15        |
| 50 | Energy optimization in gold nanoparticle enhanced radiation therapy. Physics in Medicine and Biology, 2018, 63, 135001.                                                                                                       | 1.6 | 14        |
| 51 | Modulation of gold nanoparticle mediated radiation dose enhancement through synchronization of breast tumor cell population. British Journal of Radiology, 2019, 92, 20190283.                                                | 1.0 | 13        |
| 52 | The relation between microdosimetry and induction of direct damage to DNA by alpha particles.<br>Physics in Medicine and Biology, 2021, 66, 155016.                                                                           | 1.6 | 11        |
| 53 | Mitochondria as a target for radiosensitisation by gold nanoparticles. Journal of Physics: Conference Series, 2017, 777, 012008.                                                                                              | 0.3 | 10        |
| 54 | Comparing stochastic proton interactions simulated using TOPAS-nBio to experimental data from fluorescent nuclear track detectors. Physics in Medicine and Biology, 2017, 62, 3237-3249.                                      | 1.6 | 10        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Targeting the DNA replication stress phenotype of KRAS mutant cancer cells. Scientific Reports, 2021, 11, 3656.                                                                                                             | 1.6 | 10        |
| 56 | Flagged uniform particle splitting for variance reduction in proton and carbon ion track-structure simulations. Physics in Medicine and Biology, 2017, 62, 5908-5925.                                                       | 1.6 | 9         |
| 57 | Monte Carlo methods for device simulations in radiation therapy. Physics in Medicine and Biology, 2021, 66, 18TR01.                                                                                                         | 1.6 | 9         |
| 58 | Multi-scale Monte Carlo simulations of gold nanoparticle-induced DNA damages for kilovoltage X-ray<br>irradiation in a xenograft mouse model using TOPAS-nBio. Cancer Nanotechnology, 2021, 12, .                           | 1.9 | 9         |
| 59 | Application of High-Z Gold Nanoparticles in Targeted Cancer Radiotherapy—Pharmacokinetic<br>Modeling, Monte Carlo Simulation and Radiobiological Effect Modeling. Cancers, 2021, 13, 5370.                                  | 1.7 | 9         |
| 60 | Consistency checks of results from a Monte Carlo code intercomparison for emitted electron spectra and energy deposition around a single gold nanoparticle irradiated by X-rays. Radiation Measurements, 2021, 147, 106637. | 0.7 | 7         |
| 61 | Limitations of analytical dose calculations for small field proton radiosurgery. Physics in Medicine and Biology, 2017, 62, 246-257.                                                                                        | 1.6 | 6         |
| 62 | Monte Carlo Processing on a Chip (MCoaC)-preliminary experiments toward the realization of optimal-hardware for TOPAS/Geant4 to drive discovery. Physica Medica, 2019, 64, 166-173.                                         | 0.4 | 6         |
| 63 | Computational models and tools. Medical Physics, 2018, 45, e1073-e1085.                                                                                                                                                     | 1.6 | 5         |
| 64 | Impact of uncertainties in range and RBE on small field proton therapy. Physics in Medicine and Biology, 2019, 64, 205005.                                                                                                  | 1.6 | 5         |
| 65 | DNA damage modeled with Geant4-DNA: effects of plasmid DNA conformation and experimental conditions. Physics in Medicine and Biology, 2021, 66, 245017.                                                                     | 1.6 | 5         |
| 66 | TOPAS-nBio simulation of temperature-dependent indirect DNA strand break yields. Physics in Medicine and Biology, 0, , .                                                                                                    | 1.6 | 5         |
| 67 | Challenges in the quantification approach to a radiation relevant adverse outcome pathway for lung cancer. International Journal of Radiation Biology, 2021, 97, 85-101.                                                    | 1.0 | 4         |
| 68 | Pre- and post-treatment image-based dosimetry in <sup>90</sup> Y-microsphere radioembolization using the TOPAS Monte Carlo toolkit. Physics in Medicine and Biology, 2021, 66, 244002.                                      | 1.6 | 4         |
| 69 | A computational approach to quantifying miscounting of radiation-induced double-strand break immunofluorescent foci. Communications Biology, 2022, 5, .                                                                     | 2.0 | 4         |
| 70 | Timeâ€resolved diode dosimetry calibration through Monte Carlo modeling for <i>inÂvivo</i> passive scattered proton therapy range verification. Journal of Applied Clinical Medical Physics, 2017, 18, 200-205.             | 0.8 | 3         |
| 71 | SU-E-T-475: Nano-Dosimetric Track Structure Scoring including Biological Modeling with TOPAS-NBio.<br>Medical Physics, 2012, 39, 3814-3814.                                                                                 | 1.6 | 3         |
| 72 | SU-E-T-180: Fano Cavity Test of Proton Transport in Monte Carlo Codes Running On GPU and Xeon Phi.<br>Medical Physics, 2014, 41, 264-264.                                                                                   | 1.6 | 3         |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | WE-H-BRA-01: BEST IN PHYSICS (THERAPY): Nano-Dosimetric Kinetic Model for Variable Relative Biological Effectiveness of Proton and Ion Beams. Medical Physics, 2016, 43, 3842-3842.                                  | 1.6 | 3         |
| 74 | SUâ€Eâ€Tâ€500: Pencilâ€Beam versus Monte Carlo Based Dose Calculation for Proton Therapy Patients with<br>Complex Geometries. Clinical Use of the TOPAS Monte Carlo System. Medical Physics, 2012, 39,<br>3820-3820. | 1.6 | 3         |
| 75 | SUâ€Fâ€BRDâ€13: A Phenomenological Relative Biological Effectiveness (RBE) Model for Proton Therapy<br>Based On All Published in Vitro Cell Survival Data. Medical Physics, 2015, 42, 3528-3528.                     | 1.6 | 3         |
| 76 | Dosimetric Uncertainties and Their Impact on Treatment Planning in Stereotactic Proton<br>Radiosurgery. International Journal of Radiation Oncology Biology Physics, 2016, 96, E618.                                 | 0.4 | 2         |
| 77 | WE-F-105-03: Development of GPMC V2.0, a GPU-Based Monte Carlo Dose Calculation Package for Proton Radiotherapy. Medical Physics, 2013, 40, 498-498.                                                                 | 1.6 | 2         |
| 78 | SUâ€Eâ€Tâ€518: Investigation of Gold Nanoparticle Radiosensitization for Carbon Ion Therapy. Medical Physics, 2015, 42, 3454-3454.                                                                                   | 1.6 | 2         |
| 79 | TU-F-CAMPUS-T-04: Using Gold Nanoparticles to Target Mitochondria in Radiation Therapy. Medical Physics, 2015, 42, 3644-3644.                                                                                        | 1.6 | 2         |
| 80 | SU-F-T-139: Meeting the Challenges of Quality Control in the TOPAS Monte Carlo Simulation Toolkit for Proton Therapy. Medical Physics, 2016, 43, 3493-3494.                                                          | 1.6 | 2         |
| 81 | Comparing 2 Monte Carlo Systems in Use for Proton Therapy Research. International Journal of<br>Particle Therapy, 2019, 6, 18-27.                                                                                    | 0.9 | 2         |
| 82 | Advanced Dose Calculation to Reduce Uncertainties in Treatment Planning and Delivery for Proton<br>Therapy Patients. International Journal of Radiation Oncology Biology Physics, 2012, 84, S55-S56.                 | 0.4 | 1         |
| 83 | Site-Specific Range Uncertainties Due to by Dose Calculation Algorithms for Proton Therapy.<br>International Journal of Radiation Oncology Biology Physics, 2014, 90, S26.                                           | 0.4 | 1         |
| 84 | Effects of Gold Nanoparticles for Radiation Therapy Enhancement. International Journal of Radiation<br>Oncology Biology Physics, 2015, 93, S43.                                                                      | 0.4 | 1         |
| 85 | EP-1551: Benchmarking Monte Carlo for proton radiosurgery. Radiotherapy and Oncology, 2016, 119, S718-S719.                                                                                                          | 0.3 | 1         |
| 86 | Investigating beam range uncertainty in proton prostate treatment using pelvic-like biological phantoms. Physics in Medicine and Biology, 2021, 66, 185005.                                                          | 1.6 | 1         |
| 87 | SU-E-T-464: On the Equivalence of the Quality Correction Factor for Pencil Beam Scanning Proton Therapy. Medical Physics, 2014, 41, 333-333.                                                                         | 1.6 | 1         |
| 88 | SU-E-T-473: Performance Assessment of the TOPAS Tool for Particle Simulation for Proton Therapy Applications. Medical Physics, 2012, 39, 3814-3814.                                                                  | 1.6 | 1         |
| 89 | Implementation of apertures in a proton pencil-beam dose algorithm. Biomedical Physics and Engineering Express, 2022, 8, 025024.                                                                                     | 0.6 | 1         |
| 90 | NK and NKT cells in pseudomonas aeruginosa exotoxin A -induced hepatotoxicity in mice. Journal of<br>Hepatology, 2003, 38, 208.                                                                                      | 1.8 | 0         |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Fast Monte Carlo Dose Calculation on GPU for Proton Therapy. International Journal of Radiation<br>Oncology Biology Physics, 2012, 84, S841.                                                                       | 0.4 | 0         |
| 92  | OC-0079: Biological modeling of gold nanoparticle radiosensitization for proton therapy.<br>Radiotherapy and Oncology, 2014, 111, S30-S31.                                                                         | 0.3 | 0         |
| 93  | PD-0096: Quantification of gold nanoparticle induced microscopic dose enhancement using protons.<br>Radiotherapy and Oncology, 2014, 111, S40.                                                                     | 0.3 | 0         |
| 94  | SP-0111: Dose calculation accuracy in proton therapy. Radiotherapy and Oncology, 2015, 115, S53-S54.                                                                                                               | 0.3 | 0         |
| 95  | SU-E-T-470: Comparison of Proton Treatment Planning and Monte Carlo Calculation Using TOPAS for Liver Cancer. Medical Physics, 2012, 39, 3813-3813.                                                                | 1.6 | Ο         |
| 96  | WE-C-BRB-09: Development of a GPU-Based Monte Carlo Dose Calculation Package for Proton Radiotherapy. Medical Physics, 2012, 39, 3945-3945.                                                                        | 1.6 | 0         |
| 97  | WE-C-BRB-07: Benchmarking of the TOPAS Monte Carlo System against Phantom Dose Measurements in Proton Therapy. Medical Physics, 2012, 39, 3945-3945.                                                               | 1.6 | 0         |
| 98  | MO-F-BRB-03: A Method to Assess the Need for Clinical Monte Carlo Dose Calculations for Small<br>Proton Therapy Fields. Medical Physics, 2012, 39, 3874-3874.                                                      | 1.6 | 0         |
| 99  | TH-E-BRA-06: Feasibility of Real Time MRI-Guidance in Proton Therapy. Medical Physics, 2012, 39, 4012-4013.                                                                                                        | 1.6 | 0         |
| 100 | SU-E-T-404: Quantification of Proton Dose Enhancement Resulting From Gold Nanoparticles. Medical Physics, 2013, 40, 297-297.                                                                                       | 1.6 | 0         |
| 101 | SU-E-T-451: Patient and Site-Specific Assessment of the Value of Routine Monte Carlo Dose Calculation in Proton Therapy. Medical Physics, 2013, 40, 309-309.                                                       | 1.6 | 0         |
| 102 | TU-A-108-01: Four-Dimensional Monte Carlo Using the TOPAS TOol for PArticle Simulation. Medical Physics, 2013, 40, 419-419.                                                                                        | 1.6 | 0         |
| 103 | WE-C-108-07: Optimal Parameters for Variance Reduction in Monte Carlo Simulations for Proton Therapy. Medical Physics, 2013, 40, 475-475.                                                                          | 1.6 | 0         |
| 104 | WE-G-500-04: A Novel Technique for In-Vivo and Real-Time Range Verification Based On the<br>Characteristic Prompt Gamma Time-Structure of Passively Modulated Proton Beams. Medical Physics,<br>2013, 40, 503-503. | 1.6 | 0         |
| 105 | TH-A-19A-02: Expanding TOPAS Towards Biological Modeling. Medical Physics, 2014, 41, 533-533.                                                                                                                      | 1.6 | 0         |
| 106 | TH-A-19A-11: Validation of GPU-Based Monte Carlo Code (gPMC) Versus Fully Implemented Monte Carlo<br>Code (TOPAS) for Proton Radiation Therapy: Clinical Cases Study. Medical Physics, 2014, 41, 535-535.          | 1.6 | 0         |
| 107 | TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations. Medical Physics, 2014, 41, 534-534.                                                                                   | 1.6 | 0         |
| 108 | WE-D-BRF-01: FEATURED PRESENTATION - Investigating Particle Track Structures Using Fluorescent Nuclear Track Detectors and Monte Carlo Simulations. Medical Physics, 2014, 41, 495-495.                            | 1.6 | 0         |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | WE-G-BRE-02: Biological Modeling of Gold Nanoparticle Radiosensitization for Proton Therapy.<br>Medical Physics, 2014, 41, 517-517.                                                                                                                         | 1.6 | 0         |
| 110 | WE-C-BRE-04: Gold Nanoparticle Induced Vasculature Damage for Proton Therapy: Monte Carlo<br>Simulation. Medical Physics, 2014, 41, 517-517.                                                                                                                | 1.6 | 0         |
| 111 | SUâ€Eâ€Tâ€524: Inâ€Vivo Diode Dosimetry Proton Therapy Range Verification Validation Study for Pediatric CSI.<br>Medical Physics, 2015, 42, 3455-3456.                                                                                                      | 1.6 | 0         |
| 112 | SUâ€Eâ€Tâ€567: Neutron Dose Equivalent Evaluation for Pencil Beam Scanning Proton Therapy with<br>Apertures. Medical Physics, 2015, 42, 3466-3466.                                                                                                          | 1.6 | 0         |
| 113 | SUâ€Eâ€Tâ€769: Tâ€Test Based Prior Error Estimate and Stopping Criterion for Monte Carlo Dose Calculation<br>in Proton Therapy. Medical Physics, 2015, 42, 3514-3514.                                                                                       | 1.6 | 0         |
| 114 | SUâ€Eâ€Tâ€135: Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton<br>Therapy. Medical Physics, 2015, 42, 3362-3362.                                                                                                 | 1.6 | 0         |
| 115 | SUâ€Eâ€Tâ€466: Implementation of An Extension Module for Dose Response Models in the TOPAS Monte Carlo<br>Toolkit. Medical Physics, 2015, 42, 3441-3442.                                                                                                    | 1.6 | 0         |
| 116 | SUâ€Eâ€Tâ€673: Recent Developments and Comprehensive Validations of a GPUâ€Based Proton Monte Carlo<br>Simulation Package, GPMC. Medical Physics, 2015, 42, 3491-3491.                                                                                      | 1.6 | 0         |
| 117 | WE-H-BRA-07: Mechanistic Modelling of the Relative Biological Effectiveness of Heavy Charged Particles. Medical Physics, 2016, 43, 3844-3844.                                                                                                               | 1.6 | 0         |
| 118 | SU-F-T-682: In-Vivo Simulation of the Relative Biological Effectiveness in Proton Therapy Using a Monte Carlo Method. Medical Physics, 2016, 43, 3621-3621.                                                                                                 | 1.6 | 0         |
| 119 | WE-H-BRA-04: Biological Geometries for the Monte Carlo Simulation Toolkit TOPASNBio. Medical Physics, 2016, 43, 3843-3843.                                                                                                                                  | 1.6 | 0         |
| 120 | TH-CD-201-07: Experimentally Investigating Proton Energy Deposition On the Microscopic Scale Using<br>Fluorescence Nuclear Track Detectors. Medical Physics, 2016, 43, 3870-3871.                                                                           | 1.6 | 0         |
| 121 | SU-F-T-157: Physics Considerations Regarding Dosimetric Accuracy of Analytical Dose Calculations for Small Field Proton Therapy: A Monte Carlo Study. Medical Physics, 2016, 43, 3498-3498.                                                                 | 1.6 | 0         |
| 122 | WE-DE-202-00: Connecting Radiation Physics with Computational Biology. Medical Physics, 2016, 43, 3815-3815.                                                                                                                                                | 1.6 | 0         |
| 123 | WE-AB-207B-06: Dose and Biological Uncertainties in Sarcoma. Medical Physics, 2016, 43, 3805-3805.                                                                                                                                                          | 1.6 | 0         |
| 124 | WE-DE-202-01: Connecting Nanoscale Physics to Initial DNA Damage Through Track Structure Simulations. Medical Physics, 2016, 43, 3815-3815.                                                                                                                 | 1.6 | 0         |
| 125 | MO-FG-CAMPUS-TeP3-02: Benchmarks of a Proton Relative Biological Effectiveness (RBE) Model for DNA<br>Double Strand Break (DSB) Induction in the FLUKA, MCNP, TOPAS, and RayStationâ,,¢ Treatment Planning<br>System. Medical Physics, 2016, 43, 3727-3728. | 1.6 | 0         |
| 126 | Poster - 16: Time-resolved diode dosimetry for in vivo proton therapy range verification: calibration through numerical modeling. Medical Physics, 2016, 43, 4939-4939.                                                                                     | 1.6 | 0         |