
Miroslav Cernik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6010354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, Characterization and Physicochemical Properties of Biogenic Silver Nanoparticle-Encapsulated Chitosan Bionanocomposites. Polymers, 2022, 14, 463.	2.0	7
2	Enhanced degradation of sulfamethoxazole by a modified nano zero-valent iron with a β-cyclodextrin polymer: Mechanism and toxicity evaluation. Science of the Total Environment, 2022, 817, 152888.	3.9	26
3	Tree gum-based nanostructures and their biomedical applications. , 2022, , 383-407.		Ο
4	Sustainable and safer nanoclay composites for multifaceted applications. Green Chemistry, 2022, 24, 3081-3114.	4.6	28
5	Dialdehyde Modified Tree Gum Karaya: A Sustainable Green Crosslinker for Gelatinâ€Based Edible Films. Advanced Sustainable Systems, 2022, 6, .	2.7	4
6	<i>Aegle marmelos</i> Leaf Extract Based Synthesis of Nanoiron and Nanoiron+Au Particles for Degradation of Methylene Blue. Ecological Chemistry and Engineering S, 2022, 29, 7-14.	0.3	0
7	Activation of Peroxydisulfate by Bimetallic Nano Zero-Valent Iron for Waste-Activated Sludge Disintegration. Catalysts, 2022, 12, 590.	1.6	0
8	Dissolved iron released from nanoscale zero-valent iron (nZVI) activates the defense system in bacterium Pseudomonas putida, leading to high tolerance to oxidative stress. Journal of Hazardous Materials, 2022, 439, 129627.	6.5	4
9	Analysis of the Remediation of Coal Tar-Contaminated Groundwater Using Ex Situ Remediation. Water (Switzerland), 2022, 14, 2182.	1.2	1
10	Surface modification of zero-valent iron nanoparticles with β-cyclodextrin for 4-nitrophenol conversion. Journal of Colloid and Interface Science, 2021, 586, 655-662.	5.0	26
11	Modification of nZVI with a bio-conjugate containing amine and carbonyl functional groups for catalytic activation of persulfate. Separation and Purification Technology, 2021, 257, 117880.	3.9	26
12	Transforming gum wastes into high tap density micron-sized carbon with ultra-stable high-rate Li storage. Electrochimica Acta, 2021, 367, 137419.	2.6	6
13	Nanoparticles and nanofibres based on tree gums: Biosynthesis and applications. Comprehensive Analytical Chemistry, 2021, 94, 223-265.	0.7	6
14	Influence of catalyst zeta potential on the activation of persulfate. Chemical Communications, 2021, 57, 7814-7817.	2.2	13
15	Eco-Friendly and Economic, Adsorptive Removal of Cationic and Anionic Dyes by Bio-Based Karaya Gum—Chitosan Sponge. Polymers, 2021, 13, 251.	2.0	38
16	Electrospun fibers based on botanical, seaweed, microbial, and animal sourced biomacromolecules and their multidimensional applications. International Journal of Biological Macromolecules, 2021, 171, 130-149.	3.6	35
17	Hierarchically Porous Bioâ€Based Sustainable Conjugate Sponge for Highly Selective Oil/Organic Solvent Absorption. Advanced Functional Materials, 2021, 31, 2100640.	7.8	43
18	Biomacromolecule assembly based on gum kondagogu-sodium alginate composites and their expediency in flexible packaging films. International Journal of Biological Macromolecules, 2021, 177, 526-534.	3.6	33

#	Article	IF	CITATIONS
19	Chitosan/Gelatin/Silver Nanoparticles Composites Films for Biodegradable Food Packaging Applications. Polymers, 2021, 13, 1680.	2.0	77
20	Cinnamomum tamala Leaf Extract Stabilized Zinc Oxide Nanoparticles: A Promising Photocatalyst for Methylene Blue Degradation. Nanomaterials, 2021, 11, 1558.	1.9	34
21	On the Use of Laser Fragmentation for the Synthesis of Ligand-Free Ultra-Small Iron Nanoparticles in Various Liquid Environments. Nanomaterials, 2021, 11, 1538.	1.9	4
22	Alkenyl succinic anhydride modified tree-gum kondagogu: A bio-based material with potential for food packaging. Carbohydrate Polymers, 2021, 266, 118126.	5.1	22
23	Selective spectrophotometric determination of peroxydisulfate based on a by-product formation. Sensors and Actuators B: Chemical, 2021, 344, 130214.	4.0	6
24	Laser-synthesized Ag/TiO nanoparticles to integrate catalytic pollutant degradation and antifouling enhancement in nanofibrous membranes for oil–water separation. Applied Surface Science, 2021, 564, 150471.	3.1	17
25	Graphene Oxide—Plant Gum Nanocomposites for Sustainable Applications. Composites Science and Technology, 2021, , 149-171.	0.4	3
26	A comparative study of the degradation efficiency of chlorinated organic compounds by bimetallic zero-valent iron nanoparticles. Environmental Science: Water Research and Technology, 2021, 8, 162-172.	1.2	16
27	Effect of CoSi2 interfacial layer on the magnetic properties of Si CoSi2 Sm-Co thin films. Journal of Magnetism and Magnetic Materials, 2020, 493, 165716.	1.0	1
28	Study on the field-cooling induced magnetic interactions in Gd-doped NiO nanoparticles. Journal of Magnetism and Magnetic Materials, 2020, 493, 165713.	1.0	16
29	Tree Gum–Graphene Oxide Nanocomposite Films as Gas Barriers. ACS Applied Nano Materials, 2020, 3, 633-640.	2.4	33
30	Synthesis of Ag nanoparticles by a chitosan-poly(3-hydroxybutyrate) polymer conjugate and their superb catalytic activity. Carbohydrate Polymers, 2020, 232, 115806.	5.1	27
31	Combination of nZVI and DC for the in-situ remediation of chlorinated ethenes: An environmental and economic case study. Chemosphere, 2020, 245, 125576.	4.2	13
32	Fabrication of a Greener TiO ₂ @Gum Arabic-Carbon Paste Electrode for the Electrochemical Detection of Pb ²⁺ lons in Plastic Toys. ACS Omega, 2020, 5, 25390-25399.	1.6	18
33	Corporate Social Responsibility of Companies Producing PFOA Containing Waxes for Cross-Country Skiing. Sustainability, 2020, 12, 5141.	1.6	6
34	Toward Expanding the Optical Response of Ag2CrO4 and Bi2O3 by Their Laser-Mediated Heterojunction. Journal of Physical Chemistry C, 2020, 124, 26404-26414.	1.5	2
35	Advances in biogenically synthesized shaped metal- and carbon-based nanoarchitectures and their medicinal applications. Advances in Colloid and Interface Science, 2020, 283, 102236.	7.0	46
36	A Polymeric Composite Material (rGO/PANI) for Acid Blue 129 Adsorption. Polymers, 2020, 12, 1051.	2.0	10

#	Article	IF	CITATIONS
37	Structural and magnetic properties of rare-earth-free MnAl(MCNT)/Fe nanocomposite magnets processed by resin-bonding technique. Journal of Materials Science: Materials in Electronics, 2020, 31, 9878-9887.	1.1	2
38	PVDF nanofibrous membranes modified via laser-synthesized Ag nanoparticles for a cleaner oily water separation. Applied Surface Science, 2020, 526, 146575.	3.1	13
39	Microscopic Techniques for the Analysis of Micro and Nanostructures of Biopolymers and Their Derivatives. Polymers, 2020, 12, 512.	2.0	59
40	Electrospun fibers based on carbohydrate gum polymers and their multifaceted applications. Carbohydrate Polymers, 2020, 247, 116705.	5.1	39
41	Hydrochemical Conditions for Aerobic/Anaerobic Biodegradation of Chlorinated Ethenes—A Multi-Site Assessment. Water (Switzerland), 2020, 12, 322.	1.2	12
42	Recycling non-food-grade tree gum wastes into nanoporous carbon for sustainable energy harvesting. Green Chemistry, 2020, 22, 1198-1208.	4.6	33
43	Laser-induced fragmentation of carbonyl iron as a clean method to enhance magnetorheological effect. Journal of Cleaner Production, 2020, 254, 120182.	4.6	9
44	UV-Catalyzed Persulfate Oxidation of an Anthraquinone Based Dye. Catalysts, 2020, 10, 456.	1.6	20
45	Combining nanoscale zero-valent iron with electrokinetic treatment for remediation of chlorinated ethenes and promoting biodegradation: A long-term field study. Water Research, 2020, 175, 115692.	5.3	33
46	Geochemical Principles of Reductive Remediation Processes. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 3-17.	0.2	2
47	The Development and Challenges of Oxidative Abatement for Contaminants of Emerging Concern. , 2020, , 131-152.		5
48	In situ pilot application of nZVI embedded in activated carbon for remediation of chlorinated ethene-contaminated groundwater: effect on microbial communities. Environmental Sciences Europe, 2020, 32, .	2.6	11
49	Development of ZnO Nanoflake Type Structures Using Silk Fibres as Template for Water Pollutants Remediation. Polymers, 2020, 12, 1151.	2.0	6
50	SYNERGISTIC EFFECT OF NANO ZERO-VALENT IRON AND CYCLODEXTRINS: A NANO-STRUCTURE FOR WATER PURIFICATION. , 2020, , .		2
51	Other Chemical Reductive Methods. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 53-64.	0.2	1
52	Combination of Electrokinetics and nZVI Remediation. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 65-85.	0.2	1
53	Tool I: Characterization of nZVI Mobility in 1D and Cascade Columns by Ferromagnetic Susceptibility Sensor. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 609-617.	0.2	0
54	A new method for assessment of the sludge disintegration degree with the use of differential centrifugal sedimentation. Environmental Technology (United Kingdom), 2019, 40, 3086-3093.	1.2	10

#	Article	IF	CITATIONS
55	Engineered in situ biogeochemical transformation as a secondary treatment following ISCO – A field test. Chemosphere, 2019, 237, 124460.	4.2	6
56	Chemical oxidation and reduction of hexachlorocyclohexanes: A review. Water Research, 2019, 162, 302-319.	5.3	81
57	Greener assembling of MoO3 nanoparticles supported on gum arabic: cytotoxic effects and catalytic efficacy towards reduction of p-nitrophenol. Clean Technologies and Environmental Policy, 2019, 21, 1549-1561.	2.1	29
58	Microwave-assisted sustainable co-digestion of sewage sludge and rapeseed cakes. Energy Conversion and Management, 2019, 199, 112012.	4.4	14
59	Gum Kondagogu/Reduced Graphene Oxide Framed Platinum Nanoparticles and Their Catalytic Role. Molecules, 2019, 24, 3643.	1.7	21
60	Understanding fungal potential in the mitigation of contaminated areas in the Czech Republic: tolerance, biotransformation of hexachlorocyclohexane (HCH) and oxidative stress analysis. Environmental Science and Pollution Research, 2019, 26, 24445-24461.	2.7	8
61	"Green―polymeric electrospun fibers based on tree-gum hydrocolloids. , 2019, , 127-172.		6
62	Improvement of the thermophilic anaerobic digestion and hygienisation of waste activated sludge by synergistic pretreatment. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 694-700.	0.9	3
63	Bioplastic Fibers from Gum Arabic for Greener Food Wrapping Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 5900-5911.	3.2	37
64	Electric-field enhanced reactivity and migration of iron nanoparticles with implications for groundwater treatment technologies: Proof of concept. Water Research, 2019, 154, 361-369.	5.3	21
65	The Use of a Biopolymer Conjugate for an Eco-Friendly One-Pot Synthesis of Palladium-Platinum Alloys. Polymers, 2019, 11, 1948.	2.0	9
66	Interfacial layer formation during high-temperature deposition of Sm-Co magnetic thin films on Si (100) substrates. Intermetallics, 2019, 106, 36-47.	1.8	7
67	Disintegration of Wastewater Activated Sludge (WAS) for Improved Biogas Production. Energies, 2019, 12, 21.	1.6	31
68	Laser-assisted synthesis of Fe-Cu oxide nanocrystals. Applied Surface Science, 2019, 469, 1007-1015.	3.1	11
69	Production of electrospun nanofibers based on graphene oxide/gum Arabic. International Journal of Biological Macromolecules, 2019, 124, 396-402.	3.6	40
70	Major Advances and Challenges in Heterogeneous Catalysis for Environmental Applications: A Review. Ecological Chemistry and Engineering S, 2018, 25, 9-34.	0.3	58
71	Thermally enhanced in situ bioremediation of groundwater contaminated with chlorinated solvents – A field test. Science of the Total Environment, 2018, 622-623, 743-755.	3.9	43
72	Green Synthesis of High Temperature Stable Anatase Titanium Dioxide Nanoparticles Using Gum Kondagogu: Characterization and Solar Driven Photocatalytic Degradation of Organic Dye. Nanomaterials, 2018, 8, 1002.	1.9	68

#	Article	IF	CITATIONS
73	A poly(3-hydroxybutyrate)–chitosan polymer conjugate for the synthesis of safer gold nanoparticles and their applications. Green Chemistry, 2018, 20, 4975-4982.	4.6	40
74	Green Synthesis of Metal and Metal Oxide Nanoparticles and Their Effect on the Unicellular Alga Chlamydomonas reinhardtii. Nanoscale Research Letters, 2018, 13, 159.	3.1	76
75	Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnology Advances, 2018, 36, 1984-2016.	6.0	106
76	Green synthesis of gold nanoparticles using Artemisia dracunculus extract: control of the shape and size by varying synthesis conditions. Environmental Science and Pollution Research, 2018, 25, 24210-24219.	2.7	32
77	Effect of various chemical oxidation agents on soil microbial communities. Chemical Engineering Journal, 2017, 314, 257-265.	6.6	46
78	Gum karaya (Sterculia urens) stabilized zero-valent iron nanoparticles: characterization and applications for the removal of chromium and volatile organic pollutants from water. RSC Advances, 2017, 7, 13997-14009.	1.7	44
79	Microbial degradation of chloroethenes: a review. Environmental Science and Pollution Research, 2017, 24, 13262-13283.	2.7	103
80	A study of the reaction of ferrate with pentachlorophenol – kinetics and degradation products. Water Science and Technology, 2017, 75, 189-195.	1.2	5
81	TiO ₂ immobilised on biopolymer nanofibers for the removal of bisphenol A and diclofenac from water. Ecological Chemistry and Engineering S, 2017, 24, 417-429.	0.3	10
82	Chemistry of persulfates in water and wastewater treatment: A review. Chemical Engineering Journal, 2017, 330, 44-62.	6.6	1,320
83	Stratification of chlorinated ethenes natural attenuation in an alluvial aquifer assessed by hydrochemical and biomolecular tools. Chemosphere, 2017, 184, 1157-1167.	4.2	30
84	Zero-valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms. Environmental Science and Pollution Research, 2017, 24, 21191-21202.	2.7	31
85	MWCNT reinforced Ï"-Mn-Al nanocomposite magnets through spark plasma sintering. Journal of Alloys and Compounds, 2017, 695, 364-371.	2.8	7
86	Structural Parameters of Functional Membranes for Integration in Smart Wearable Materials. Fibres and Textiles in Eastern Europe, 2017, 25, 73-78.	0.2	7
87	Advances in Electrospun Nanofibers. Journal of Nanomaterials, 2016, 2016, 1-2.	1.5	2
88	Stabilization of Iron (Micro)Particles with Polyhydroxybutyrate for In Situ Remediation Applications. Applied Sciences (Switzerland), 2016, 6, 417.	1.3	13
89	The Impact of Oxone on Disintegration and Dewaterability of Waste Activated Sludge. Water Environment Research, 2016, 88, 152-157.	1.3	18
90	Improvements in nanoscale zero-valent iron production by milling through the addition of alumina. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	12

#	Article	IF	CITATIONS
91	Green Synthesis: Nanoparticles and Nanofibres Based on Tree Gums for Environmental Applications. Ecological Chemistry and Engineering S, 2016, 23, 533-557.	0.3	30
92	Spark plasma-sintered Sn-based intermetallic alloys and their Li-storage studies. Journal of Solid State Electrochemistry, 2016, 20, 1743-1751.	1.2	12
93	Electrospun fibers based on Arabic, karaya and kondagogu gums. International Journal of Biological Macromolecules, 2016, 91, 299-309.	3.6	54
94	Degradability of chlorophenols using ferrate(VI) in contaminated groundwater. Environmental Science and Pollution Research, 2016, 23, 1408-1413.	2.7	11
95	Dynamics of organohalide-respiring bacteria and their genes following in-situ chemical oxidation of chlorinated ethenes and biostimulation. Chemosphere, 2016, 157, 276-285.	4.2	26
96	Combination of nanoscale-zero-valent iron and organic substrate stimulation for efficient remediation of co-mingled plume contaminated with Cr(VI) and chlorinated solvents. New Biotechnology, 2016, 33, S6.	2.4	1
97	Electrospun membrane composed of poly[acrylonitrile-co-(methyl acrylate)-co-(itaconic acid)] terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water. RSC Advances, 2016, 6, 110288-110300.	1.7	20
98	Chemical Degradation of PCDD/F in Contaminated Sediment. Ecological Chemistry and Engineering S, 2016, 23, 473-482.	0.3	15
99	Ce 2 S 3 decorated ZnO-ZnS core-shell nanorod arrays: Efficient solar-driven photocatalytic properties. Catalysis Today, 2016, 278, 271-279.	2.2	31
100	Remediation of hexachlorocyclohexanes by electrochemically activated persulfates. Environmental Science and Pollution Research, 2016, 23, 765-773.	2.7	44
101	Remediation of hexachlorocyclohexanes by cobalt-mediated activation of peroxymonosulfate. Desalination and Water Treatment, 2016, 57, 26274-26279.	1.0	23
102	A novel approach for simultaneous improvement of dewaterability, post-digestion liquor properties and toluene removal from anaerobically digested sludge. Chemical Engineering Journal, 2016, 291, 192-198.	6.6	51
103	Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Science of the Total Environment, 2016, 563-564, 822-834.	3.9	83
104	Characterisation of morphological, antimicrobial and leaching properties of in situ prepared polyurethane nanofibres doped with silver behenate. RSC Advances, 2016, 6, 23816-23826.	1.7	4
105	DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere, 2016, 144, 2221-2228.	4.2	139
106	The impact of peroxydisulphate and peroxymonosulphate on disintegration and settleability of activated sludge. Environmental Technology (United Kingdom), 2016, 37, 1296-1304.	1.2	19
107	Effect of annealing temperature on the structural and magnetic properties of CTAB-capped SrFe12O19 platelets. Journal of Magnetism and Magnetic Materials, 2016, 401, 775-783.	1.0	22
108	Magnetic behaviour of sol–gel driven BiFeO3 thin films with different grain size distribution. Journal of Magnetism and Magnetic Materials, 2016, 401, 180-187.	1.0	24

#	Article	IF	CITATIONS
109	Coercivity enhancement in Mn-Al-Cu flakes produced by surfactant-assisted milling. Applied Physics Letters, 2015, 107, 192407.	1.5	20
110	Use of Various Zero Valent Irons for Degradation of Chlorinated Ethenes and Ethanes. Ecological Chemistry and Engineering S, 2015, 22, 577-587.	0.3	15
111	Fabrication, Characterization, and Antibacterial Properties of Electrospun Membrane Composed of Gum Karaya, Polyvinyl Alcohol, and Silver Nanoparticles. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	30
112	Texture analysis of tinplate steel and its application in production of double reduced high strength tinplate grades with controlled earing properties. IOP Conference Series: Materials Science and Engineering, 2015, 82, 012108.	0.3	6
113	Nanoremediation and International Environmental Restoration Markets. Remediation, 2015, 25, 83-94.	1.1	28
114	Structure–property relationships in Sterculia urens/polyvinyl alcohol electrospun composite nanofibres. Carbohydrate Polymers, 2015, 120, 69-73.	5.1	19
115	Plasma modified nanofibres based on gum kondagogu and their use for collection of nanoparticulate silver, gold and platinum. Carbohydrate Polymers, 2015, 121, 468-476.	5.1	26
116	Synthesis of Ni/NiO nanocomposites by hydrothermal-assisted polyol process and their magnetic properties as a function of annealing temperature. Powder Technology, 2015, 274, 98-104.	2.1	17
117	Synthesis, characterization and optical properties of graphene oxide–polystyrene nanocomposites. Polymers for Advanced Technologies, 2015, 26, 214-222.	1.6	39
118	Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions. Journal of Hazardous Materials, 2015, 287, 102-110.	6.5	55
119	Synthesis, fabrication and antibacterial properties of a plasma modified electrospun membrane consisting of gum Kondagogu, dodecenyl succinic anhydride and poly (vinyl alcohol). Surface and Coatings Technology, 2015, 271, 32-38.	2.2	37
120	Visible-light-driven SnO ₂ /TiO ₂ nanotube nanocomposite for textile effluent degradation. RSC Advances, 2015, 5, 20424-20431.	1.7	33
121	Large scale synthesis and formation mechanism of highly magnetic and stable iron nitride (ε-Fe ₃ N) nanoparticles. RSC Advances, 2015, 5, 56045-56048.	1.7	18
122	Combined abiotic and biotic in-situ reduction of hexavalent chromium in groundwater using nZVI and whey: A remedial pilot test. Journal of Hazardous Materials, 2015, 300, 670-679.	6.5	55
123	Degradability of hexachlorocyclohexanes in water using ferrate (VI). Water Science and Technology, 2015, 71, 405-411.	1.2	14
124	A study on the origin of room temperature ferromagnetism in Ni1â^'Gd O nanoparticles. Journal of Magnetism and Magnetic Materials, 2015, 394, 179-184.	1.0	13
125	Simple spectrophotometric determination of monopersulfate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 149, 928-933.	2.0	121
126	Structural and magnetic properties of SmCo-based magnetic films grown by electron-beam evaporation. Journal of Magnetism and Magnetic Materials, 2015, 385, 313-317.	1.0	5

#	Article	IF	CITATIONS
127	Dodecenylsuccinic Anhydride Derivatives of Gum Karaya (<i>Sterculia urens</i>): Preparation, Characterization, and Their Antibacterial Properties. Journal of Agricultural and Food Chemistry, 2015, 63, 3757-3765.	2.4	58
128	A surfactant-assisted high energy ball milling technique to produce colloidal nanoparticles and nanocrystalline flakes in Mn–Al alloys. RSC Advances, 2015, 5, 92406-92417.	1.7	10
129	Impact of peroxydisulphate on disintegration and sedimentation properties of municipal wastewater activated sludge. Chemical Papers, 2015, 69, .	1.0	14
130	Arsenic Immobilization by Nanoscale Zero-Valent Iron / Immobilizacja Arsenu Przez Nanożelazo Na Zerowym Stopniu Utlenienia. Ecological Chemistry and Engineering S, 2015, 22, 45-59.	0.3	2
131	Highly concentrated, reactive and stable dispersion of zero-valent iron nanoparticles: Direct surface modification and site application. Chemical Engineering Journal, 2015, 262, 813-822.	6.6	45
132	Processing of Mn–Al nanostructured magnets by spark plasma sintering and subsequent rapid thermal annealing. Journal of Magnetism and Magnetic Materials, 2015, 374, 427-432.	1.0	28
133	Hydrocolloid-Stabilized Magnetite for Efficient Removal of Radioactive Phosphates. BioMed Research International, 2014, 2014, 1-10.	0.9	9
134	Anaerobic Reaction of Nanoscale Zerovalent Iron with Water: Mechanism and Kinetics. Journal of Physical Chemistry C, 2014, 118, 13817-13825.	1.5	114
135	Exchange coupled rare-earth free Mn-Al/Fe nanocomposite magnets by spark plasma sintering. Materials Letters, 2014, 137, 369-372.	1.3	7
136	Reduction of hexavalent chromium using combination of nanoscale zero-valent iron and biological treatment in situ. New Biotechnology, 2014, 31, S64.	2.4	0
137	Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. International Journal of Nanomedicine, 2013, 8, 889.	3.3	374
138	In-Situ Combination of Bio and Abio Remediation of Chlorinated Ethenes. Ecological Chemistry and Engineering S, 2013, 20, 463-473.	0.3	4
139	Morphology and Metal Binding Characteristics of a Natural Polymer—Kondagogu (Cochlospermum) Tj ETQq1 1	0.784314 1.7	l rgBT /Overlo
140	Removal of Mercury from Aqueous Environment by Jute Nanofiber. Journal of Fiber Bioengineering and Informatics, 2013, 6, 175-184.	0.2	12
141	A field comparison of two reductive dechlorination (zero-valent iron and lactate) methods. Environmental Technology (United Kingdom), 2012, 33, 741-749.	1.2	11
142	Oxidative Stress Induced in Microorganisms by Zero-valent Iron Nanoparticles. Microbes and Environments, 2012, 27, 215.	0.7	1
143	Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research, 2012, 19, 550-558.	2.7	417
144	Oxidative Stress Induced in Microorganisms by Zero-valent Iron Nanoparticles. Microbes and Environments, 2011, 26, 271-281.	0.7	129

#	Article	IF	CITATIONS
145	Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere, 2011, 82, 1178-1184.	4.2	183
146	Oxidative stress in microorganisms exposed to iron nanoparticles. WIT Transactions on Ecology and the Environment, 2010, , .	0.0	3
147	APPLICATION OF NANOSCALE ZERO-VALENT IRON FOR GROUNDWATER REMEDIATION: LABORATORY AND PILOT EXPERIMENTS. Nano, 2008, 03, 287-289.	0.5	9
148	Environmental Applications of Chemically Pure Natural Ferrihydrite. Environmental Science & Technology, 2007, 41, 4367-4374.	4.6	97
149	Nanotechnology and groundwater remediation: A step forward in technology understanding. Remediation, 2006, 16, 23-33.	1.1	64
150	Dynamics of an Oligotrophic Bacterial Aquifer Community during Contact with a Groundwater Plume Contaminated with Benzene, Toluene, Ethylbenzene, and Xylenes: an In Situ Mesocosm Study. Applied and Environmental Microbiology, 2005, 71, 3815-3825.	1.4	84
151	Migration of radionuclides in rivers: effect of the kinetics of radionuclide interaction with suspended solids. Studies in Environmental Science, 1997, 68, 109-115.	0.0	1
152	Comments on the article "Affinity distributions and acid base properties of homogeneous and heterogeneous sorbents: exact results versus experimental data inversion― Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 122, 265-266.	2.3	1
153	Reply to the preceding comment by J.A. Schwarz. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 122, 267-268.	2.3	0
154	Affinity Distribution Description of Competitive Ion Binding to Heterogeneous Materials. Langmuir, 1996, 12, 6127-6137.	1.6	60
155	Affinity distributions and acid-base properties of homogeneous and heterogeneous sorbents: exact results versus experimental data inversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 107, 285-296.	2.3	42
156	Quantitative description of multi-component reactive transport in porous media: An empirical approach. Transport in Porous Media, 1996, 25, 193-204.	1.2	9
157	Regularized Least-Squares Methods for the Calculation of Discrete and Continuous Affinity Distributions for Heterogeneous Sorbents. Environmental Science & Technology, 1995, 29, 413-425.	4.6	101
158	Modeling of Heavy Metal Transport in a Contaminated Soil. Journal of Environmental Quality, 1994, 23, 1239-1248.	1.0	34
159	Modelling of migration of 137Cs accidentally released into a small river. Journal of Environmental Radioactivity, 1994, 22, 279-293.	0.9	21
160	Cation transport in natural porous media on laboratory scale: multicomponent effects. Journal of Contaminant Hydrology, 1994, 16, 319-337.	1.6	23
161	Kinetics of radionuclide interaction with suspended solids in modeling the migration of radionuclides in rivers. Journal of Radioanalytical and Nuclear Chemistry, 1994, 185, 15-26.	0.7	2
162	Determination of nonlinear adsorption isotherms from column experiments: an alternative to batch studies. Environmental Science & Technology, 1993, 27, 943-948.	4.6	130

#	Article	IF	CITATIONS
163	Kinetics of radionuclide interaction with suspended solids in modeling the migration of radionuclides in rivers. Journal of Radioanalytical and Nuclear Chemistry, 1992, 159, 175-186.	0.7	33
164	Kinetics of radionuclide interaction with suspended solids in modeling the migration of radionuclides in rivers. Journal of Radioanalytical and Nuclear Chemistry, 1992, 159, 187-200.	0.7	23
165	Factors affecting interaction of radiocesium with freshwater solids. Journal of Radioanalytical and Nuclear Chemistry, 1992, 159, 201-218.	0.7	28
166	Factors affecting interaction of radiocobalt with river sediments. Journal of Radioanalytical and Nuclear Chemistry, 1989, 132, 225-239.	0.7	13
167	Enhancement of stability and reactivity of nanosized zero-valent iron with polyhydroxybutyrate. , 0, 69, 302-307.		5
168	High Barrier, Biodegradable Nanocomposite Films Based on Clay oated and Chemically Modified Gum Kondagogu. Macromolecular Materials and Engineering, 0, , 2200008.	1.7	0