
Chuanxin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/60102/publications.pdf Version: 2024-02-01

СНИАМУІМ

#	Article	IF	CITATIONS
1	Exploration of defense and tolerance mechanisms in dominant species of mining area - Trifolium pratense L. upon exposure to silver. Science of the Total Environment, 2022, 811, 151380.	8.0	1
2	Physiological responses of pumpkin to zinc oxide quantum dots and nanoparticles. Environmental Pollution, 2022, 296, 118723.	7.5	9
3	Molecular Mechanisms of Early Flowering in Tomatoes Induced by Manganese Ferrite (MnFe ₂ 0 ₄) Nanomaterials. ACS Nano, 2022, 16, 5636-5646.	14.6	26
4	Role of Foliar Biointerface Properties and Nanomaterial Chemistry in Controlling Cu Transfer into Wild-Type and Mutant <i>Arabidopsis thaliana</i> Leaf Tissue. Journal of Agricultural and Food Chemistry, 2022, 70, 4267-4278.	5.2	8
5	Flooding influences on the C, N and P stoichiometry in terrestrial ecosystems: A meta-analysis. Catena, 2022, 215, 106287.	5.0	9
6	Food-grade titanium dioxide particles decrease the bioaccessibility of iron released from spinach leaves in simulated human gastrointestinal tract. Environmental Science: Nano, 2021, 8, 1269-1282.	4.3	2
7	Food-Grade Titanium Dioxide Particles Decreased the Bioaccessibility of Vitamin D ₃ in the Simulated Human Gastrointestinal Tract. Journal of Agricultural and Food Chemistry, 2021, 69, 2855-2863.	5.2	6
8	Graphitic Carbon Nitride (C3N4) Reduces Cadmium and Arsenic Phytotoxicity and Accumulation in Rice (Oryza sativa L.). Nanomaterials, 2021, 11, 839.	4.1	13
9	New insight into the mechanism of graphene oxide-enhanced phytotoxicity of arsenic species. Journal of Hazardous Materials, 2021, 410, 124959.	12.4	18
10	Role of Nanoscale Hydroxyapatite in Disease Suppression of <i>Fusarium</i> -Infected Tomato. Environmental Science & Technology, 2021, 55, 13465-13476.	10.0	33
11	Sodium selenite-carbon dots nanocomposites enhance acaricidal activity of fenpropathrin: Mechanism and application. Science of the Total Environment, 2021, 777, 145832.	8.0	4
12	Copper Oxide Nanoparticle-Embedded Hydrogels Enhance Nutrient Supply and Growth of Lettuce (<i>Lactuca sativa</i>) Infected with <i>Fusarium oxysporum</i> f. sp. <i>lactucae</i> . Environmental Science & Technology, 2021, 55, 13432-13442.	10.0	46
13	Biological removal of phosphorus and diversity analysis of microbial community in the enhanced biological phosphorus removal (EBPR) system. Water and Environment Journal, 2020, 34, 563-574.	2.2	5
14	Metalloid and Metal Oxide Nanoparticles Suppress Sudden Death Syndrome of Soybean. Journal of Agricultural and Food Chemistry, 2020, 68, 77-87.	5.2	34
15	Copper stress in flooded soil: Impact on enzyme activities, microbial community composition and diversity in the rhizosphere of Salix integra. Science of the Total Environment, 2020, 704, 135350.	8.0	45
16	Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. Nature Nanotechnology, 2020, 15, 1033-1042.	31.5	98
17	Copper Nanomaterial Morphology and Composition Control Foliar Transfer through the Cuticle and Mediate Resistance to Root Fungal Disease in Tomato (<i>Solanum lycopersicum</i>). Journal of Agricultural and Food Chemistry, 2020, 68, 11327-11338.	5.2	42
18	Copper sulfide nanoparticles suppress <i>Gibberella fujikuroi</i> infection in rice (<i>Oryza sativa</i>) Tj ETQq0	0 0 rgBT / 4.3	Overlock 10 ⁻ 43

Environmental Science: Nano, 2020, 7, 2632-2643.

CHUANXIN

#	Article	IF	CITATIONS
19	Accumulation of phenanthrene and its metabolites in lettuce (Lactuca sativa L.) as affected by magnetic carbon nanotubes and dissolved humic acids. Environmental Science: Nano, 2020, 7, 3759-3772.	4.3	4
20	Dual roles of glutathione in silver nanoparticle detoxification and enhancement of nitrogen assimilation in soybean (<i>Glycine max</i> (L.) Merrill). Environmental Science: Nano, 2020, 7, 1954-1966.	4.3	16
21	Carbon-based nanomaterials alter the composition of the fungal endophyte community in rice (<i>Oryza sativa</i> L.). Environmental Science: Nano, 2020, 7, 2047-2060.	4.3	12
22	Enhancing Agrichemical Delivery and Seedling Development with Biodegradable, Tunable, Biopolymer-Based Nanofiber Seed Coatings. ACS Sustainable Chemistry and Engineering, 2020, 8, 9537-9548.	6.7	59
23	Xylem-based long-distance transport and phloem remobilization of copper in Salix integra Thunb Journal of Hazardous Materials, 2020, 392, 122428.	12.4	24
24	Rapid organic solvent extraction coupled with surface enhanced Raman spectroscopic mapping for ultrasensitive quantification of foliarly applied silver nanoparticles in plant leaves. Environmental Science: Nano, 2020, 7, 1061-1067.	4.3	5
25	Maize (Zea mays L.) root exudates modify the surface chemistry of CuO nanoparticles: Altered aggregation, dissolution and toxicity. Science of the Total Environment, 2019, 690, 502-510.	8.0	67
26	Effects of cerium oxide on rice seedlings as affected by co-exposure of cadmium and salt. Environmental Pollution, 2019, 252, 1087-1096.	7.5	59
27	Time-Dependent Transcriptional Response of Tomato (<i>Solanum lycopersicum</i> L.) to Cu Nanoparticle Exposure upon Infection with <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> . ACS Sustainable Chemistry and Engineering, 2019, 7, 10064-10074.	6.7	69
28	Graphene oxide mediated reduction of silver ions to silver nanoparticles under environmentally relevant conditions: Kinetics and mechanisms. Science of the Total Environment, 2019, 679, 270-278.	8.0	27
29	Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. Journal of Environmental Management, 2019, 241, 319-327.	7.8	91
30	Transformation of Ag ions into Ag nanoparticle-loaded AgCl microcubes in the plant root zone. Environmental Science: Nano, 2019, 6, 1099-1110.	4.3	15
31	Chitosan-Coated Mesoporous Silica Nanoparticle Treatment of <i>Citrullus lanatus</i> (Watermelon): Enhanced Fungal Disease Suppression and Modulated Expression of Stress-Related Genes. ACS Sustainable Chemistry and Engineering, 2019, 7, 19649-19659.	6.7	80
32	Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environmental Research, 2019, 170, 1-6.	7.5	76
33	Accumulation and spatial distribution of copper and nutrients in willow as affected by soil flooding: A synchrotron-based X-ray fluorescence study. Environmental Pollution, 2019, 246, 980-989.	7.5	15
34	The role of different fractions of humic acid in the physiological response of amaranth treated with magnetic carbon nanotubes. Ecotoxicology and Environmental Safety, 2019, 169, 848-855.	6.0	10
35	Iron plaque reduces cerium uptake and translocation in rice seedlings (Oryza sativa L.) exposed to CeO2 nanoparticles with different sizes. Science of the Total Environment, 2019, 661, 767-777.	8.0	28
36	Copper Based Nanomaterials Suppress Root Fungal Disease in Watermelon (<i>Citrullus lanatus</i>): Role of Particle Morphology, Composition and Dissolution Behavior. ACS Sustainable Chemistry and Engineering, 2018, 6, 14847-14856.	6.7	133

#	Article	IF	CITATIONS
37	Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (<i>Nicotiana) Tj ETQq1 1 0.784314 i</i>	rgBT /Ovei	185 10 T
38	Metal oxide nanoparticles alter peanut (<i>Arachis hypogaea</i> L.) physiological response and reduce nutritional quality: a life cycle study. Environmental Science: Nano, 2018, 5, 2088-2102.	4.3	82
39	Co-exposure of imidacloprid and nanoparticle Ag or CeO2 to Cucurbita pepo (zucchini): Contaminant bioaccumulation and translocation. NanoImpact, 2018, 11, 136-145.	4.5	18