
John L Woolford Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6010197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Translation Ribosome Assembly. , 2021, , 518-527.		0
2	The nucleolus as a polarized coaxial cable in which the rDNA axis is surrounded by dynamic subunit-specific phases. Current Biology, 2021, 31, 2507-2519.e4.	1.8	11
3	Coupling of 5S RNP rotation with maturation of functional centers during large ribosomal subunit assembly. Nature Communications, 2020, 11, 3751.	5.8	24
4	Structural insights into assembly of the ribosomal nascent polypeptide exit tunnel. Nature Communications, 2020, 11, 5111.	5.8	21
5	Ribosome assembly coming into focus. Nature Reviews Molecular Cell Biology, 2019, 20, 116-131.	16.1	344
6	Hierarchical recruitment of ribosomal proteins and assembly factors remodels nucleolar pre-60S ribosomes. Journal of Cell Biology, 2018, 217, 2503-2518.	2.3	33
7	Structural snapshot of cytoplasmic pre-60S ribosomal particles bound by Nmd3, Lsg1, Tif6 and Reh1. Nature Structural and Molecular Biology, 2017, 24, 214-220.	3.6	94
8	Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast. Biochemical Journal, 2017, 474, 195-214.	1.7	76
9	Insights into remodeling events during eukaryotic large ribosomal subunit assembly provided by high resolution cryo-EM structures. RNA Biology, 2017, 14, 1306-1313.	1.5	13
10	Atomic modeling of the ITS2 ribosome assembly subcomplex from cryoâ€EM together with mass spectrometryâ€identified protein–protein crosslinks. Protein Science, 2017, 26, 103-112.	3.1	18
11	The assembly factor Erb1 functions in multiple remodeling events during 60S ribosomal subunit assembly inS. cerevisiae. Nucleic Acids Research, 2017, 45, gkw1361.	6.5	16
12	The N-terminal extension of yeast ribosomal protein L8 is involved in two major remodeling events during late nuclear stages of 60S ribosomal subunit assembly. Rna, 2016, 22, 1386-1399.	1.6	18
13	Disruption of ribosome assembly in yeast blocks cotranscriptional pre-rRNA processing and affects the global hierarchy of ribosome biogenesis. Rna, 2016, 22, 852-866.	1.6	37
14	Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes. Nature, 2016, 534, 133-137.	13.7	193
15	Structure and assembly model for the <i>Trypanosoma cruzi</i> 60S ribosomal subunit. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12174-12179.	3.3	63
16	Paradigms of ribosome synthesis: Lessons learned from ribosomal proteins. Translation, 2015, 3, e975018.	2.9	16
17	Functions of Ribosomal Proteins in Assembly of Eukaryotic Ribosomes In Vivo. Annual Review of Biochemistry, 2015, 84, 93-129.	5.0	302
18	Assembly of ribosomes in eukaryotes. Rna, 2015, 21, 766-768.	1.6	3

JOHN L WOOLFORD JR

#	Article	IF	CITATIONS
19	Ribosome Assembly Factors Pwp1 and Nop12 Are Important for Folding of 5.8S rRNA during Ribosome Biogenesis in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 2014, 34, 1863-1877.	1.1	33
20	Mod-seq: high-throughput sequencing for chemical probing of RNA structure. Rna, 2014, 20, 713-720.	1.6	167
21	A hierarchical model for assembly of eukaryotic 60S ribosomal subunit domains. Genes and Development, 2014, 28, 198-210.	2.7	115
22	Deletion of L4 domains reveals insights into the importance of ribosomal protein extensions in eukaryotic ribosome assembly. Rna, 2014, 20, 1725-1731.	1.6	25
23	Structured association analysis leads to insight into Saccharomyces cerevisiaegene regulation by finding multiple contributing eQTL hotspots associated with functional gene modules. BMC Genomics, 2013, 14, 196.	1.2	6
24	Ribosome Biogenesis in the Yeast <i>Saccharomyces cerevisiae</i> . Genetics, 2013, 195, 643-681.	1.2	639
25	Has1 regulates consecutive maturation and processing steps for assembly of 60S ribosomal subunits. Nucleic Acids Research, 2013, 41, 7889-7904.	6.5	52
26	Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing. Nucleic Acids Research, 2013, 41, 1965-1983.	6.5	51
27	Identification of the binding site of Rlp7 on assembling 60S ribosomal subunits in <i>Saccharomyces cerevisiae</i> . Rna, 2013, 19, 1639-1647.	1.6	23
28	Studies on the Assembly Characteristics of Large Subunit Ribosomal Proteins in S. cerevisae. PLoS ONE, 2013, 8, e68412.	1.1	51
29	Ebp2 and Brx1 function cooperatively in 60S ribosomal subunit assembly in Saccharomyces cerevisiae. Nucleic Acids Research, 2012, 40, 4574-4588.	6.5	31
30	Hierarchical recruitment into nascent ribosomes of assembly factors required for 27SB pre-rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Research, 2012, 40, 8646-8661.	6.5	67
31	Saccharomyces cerevisiae Ribosomal Protein L26 Is Not Essential for Ribosome Assembly and Function. Molecular and Cellular Biology, 2012, 32, 3228-3241.	1.1	48
32	Ribosomal proteins L7 and L8 function in concert with six A ₃ assembly factors to propagate assembly of domains I and II of 25S rRNA in yeast 60S ribosomal subunits. Rna, 2012, 18, 1805-1822.	1.6	59
33	Assembly of <i>Saccharomyces cerevisiae</i> 60S ribosomal subunits: role of factors required for 27S pre-rRNA processing. EMBO Journal, 2011, 30, 4020-4032.	3.5	84
34	Kinesin molecular motor Eg5 functions during polypeptide synthesis. Molecular Biology of the Cell, 2011, 22, 3420-3430.	0.9	34
35	Teach, Then Trust - Elizabeth W. Jones (1939–2008): Mentor to Many. Genetics, 2009, 181, 357-365.	1.2	0
36	Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines. Current Opinion in Cell Biology, 2009, 21, 109-118.	2.6	128

John L Woolford Jr

#	Article	IF	CITATIONS
37	The Rea1 Tadpole Loses Its Tail. Cell, 2009, 138, 832-834.	13.5	4
38	rRNA Maturation in Yeast Cells Depleted of Large Ribosomal Subunit Proteins. PLoS ONE, 2009, 4, e8249.	1.1	104
39	Identification of Genes That Function in the Biogenesis and Localization of Small Nucleolar RNAs in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2008, 28, 3686-3699.	1.1	19
40	Interactions among Ytm1, Erb1, and Nop7 Required for Assembly of the Nop7-Subcomplex in Yeast Preribosomes. Molecular Biology of the Cell, 2008, 19, 2844-2856.	0.9	52
41	Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes and Development, 2007, 21, 2580-2592.	2.7	175
42	Ytm1, Nop7, and Erb1 Form a Complex Necessary for Maturation of Yeast 66S Preribosomes. Molecular and Cellular Biology, 2005, 25, 10419-10432.	1.1	87
43	Role of the yeast Rrp1 protein in the dynamics of pre-ribosome maturation. Rna, 2004, 10, 813-827.	1.6	89
44	The Carboxy-Terminal Extension of Yeast Ribosomal Protein S14 Is Necessary for Maturation of 43S Preribosomes. Molecular Cell, 2004, 14, 331-342.	4.5	83
45	Interactions of Yeast Ribosomal Protein rpS14 with RNA. Journal of Molecular Biology, 2003, 333, 697-709.	2.0	13
46	Chaperoning Ribosome Assembly. Molecular Cell, 2002, 10, 8-10.	4.5	5
47	Saccharomyces cerevisiae nucleolar protein Nop7p is necessary for biogenesis of 60S ribosomal subunits. Rna, 2002, 8, 150-165.	1.6	79
48	Composition and Functional Characterization of Yeast 66S Ribosome Assembly Intermediates. Molecular Cell, 2001, 8, 505-515.	4.5	280
49	Ribosomal Protein S14 of <i>Saccharomyces cerevisiae</i> Regulates Its Expression by Binding to <i>RPS14B</i> Pre-mRNA and to 18S rRNA. Molecular and Cellular Biology, 1999, 19, 826-834.	1.1	123
50	The Yeast Nucleolar Protein Nop4p Contains Four RNA Recognition Motifs Necessary for Ribosome Biogenesis. Journal of Biological Chemistry, 1997, 272, 25345-25352.	1.6	28
51	Involvement of lysine 270 and lysine 271 of yeast 5S rRNA binding protein in RNA binding and ribosome assembly. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1996, 1308, 133-141.	2.4	7
52	The PRP31 gene encodes a novel protein required for pre-mRNA splicing in Saccharomyces cerevisiae. Nucleic Acids Research, 1996, 24, 1164-1170.	6.5	39
53	Multiple Regions of Yeast Ribosomal Protein L1 Are Important for Its Interaction with 5 S rRNA and Assembly into Ribosomes. Journal of Biological Chemistry, 1995, 270, 30148-30156.	1.6	43
54	RNA splicing in lower eukaryotes. Current Opinion in Genetics and Development, 1992, 2, 712-719.	1.5	9

JOHN L WOOLFORD JR

#	Article	IF	CITATIONS
55	The Structure and Biogenesis of Yeast Ribosomes. Advances in Genetics, 1991, 29, 63-118.	0.8	73
56	Sequence and genetic analysis of a dispensible 189 nucleotide snRNA fromSaccharomyces cerevisiae. Nucleic Acids Research, 1988, 16, 5587-5601.	6.5	14
57	A comparison of yeast ribosomal protein gene DNA sequences. Nucleic Acids Research, 1984, 12, 8295-8312.	6.5	277
58	Molecular cloning and analysis of theCRY1gene: a yeast ribosomal protein gene. Nucleic Acids Research, 1983, 11, 403-420.	6.5	115
59	The effect of temperature-sensitive RNA mutants on the transcription products from cloned ribosomal protein genes of yeast. Cell, 1981, 24, 679-686.	13.5	226
60	The use of R-looping for structural gene identification and mRNA purification. Nucleic Acids Research, 1979, 6, 2483-2497.	6.5	76
61	Isolation of cloned DNA sequences containing ribosomal protein genes from saccharomyces cerevisiae. Cell, 1979, 18, 1247-1259.	13.5	119
62	Isolation of yeast histone genes H2A and H2B. Cell, 1979, 18, 1261-1271.	13.5	308
63	[33] R-looping and structural gene identification of recombinant DNA. Methods in Enzymology, 1979, 68, 454-469.	0.4	33
64	f1 Coat protein synthesis and altered phospholipid metabolism in f1 infected Escherichia coli. Virology, 1974, 58, 544-560.	1.1	42