Thomas H Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6010155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure–activity relationship studies of allosteric inhibitors of <scp>EYA2</scp> tyrosine phosphatase. Protein Science, 2022, 31, 422-431.	7.6	4
2	Fragment-based lead discovery of indazole-based compounds as AXL kinase inhibitors. Bioorganic and Medicinal Chemistry, 2021, 49, 116437.	3.0	7
3	Targeting EYA2 tyrosine phosphatase activity in glioblastoma stem cells induces mitotic catastrophe. Journal of Experimental Medicine, 2021, 218, .	8.5	9
4	Structural model of human PORCN illuminates disease-associated variants and drug-binding sites. Journal of Cell Science, 2021, 134, .	2.0	15
5	Stepwise Evolution of Fragment Hits against MAPK Interacting Kinases 1 and 2. Journal of Medicinal Chemistry, 2020, 63, 621-637.	6.4	7
6	Probing biological mechanisms with chemical tools. Pharmacological Research, 2020, 153, 104656.	7.1	4
7	Structural and Functional Analyses of an Allosteric EYA2 Phosphatase Inhibitor That Has On-Target Effects in Human Lung Cancer Cells. Molecular Cancer Therapeutics, 2019, 18, 1484-1496.	4.1	34
8	Discovery of Irreversible Inhibitors Targeting Histone Methyltransferase, SMYD3. ACS Medicinal Chemistry Letters, 2019, 10, 978-984.	2.8	20
9	Fragment-based Discovery of a Small-Molecule Protein Kinase C-iota Inhibitor Binding Post-kinase Domain Residues. ACS Medicinal Chemistry Letters, 2019, 10, 318-323.	2.8	7
10	Fragment-Based Drug Discovery of Potent Protein Kinase C lota Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 4386-4396.	6.4	23
11	Structural Insights into the Inhibition of Zika Virus NS2B-NS3 Protease by a Small-Molecule Inhibitor. Structure, 2018, 26, 555-564.e3.	3.3	70
12	Structural and ligand-binding analysis of the YAP-binding domain of transcription factor TEAD4. Biochemical Journal, 2018, 475, 2043-2055.	3.7	35
13	Discovery of dual GyrB/ParE inhibitors active against Gram-negative bacteria. European Journal of Medicinal Chemistry, 2018, 157, 610-621.	5.5	10
14	Structural characterization of the linked <scp>NS</scp> 2Bâ€ <scp>NS</scp> 3 protease of Zika virus. FEBS Letters, 2017, 591, 2338-2347.	2.8	35
15	Backbone resonance assignments for the SET domain of human methyltransferase NSD3 in complex with its cofactor. Biomolecular NMR Assignments, 2017, 11, 225-229.	0.8	2
16	Zika Virus Protease: An Antiviral Drug Target. Trends in Microbiology, 2017, 25, 797-808.	7.7	80
17	Scaffold Hopping and Optimization of Maleimide Based Porcupine Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 6678-6692.	6.4	19
18	Structural Dynamics of Zika Virus NS2B-NS3 Protease Binding to Dipeptide Inhibitors. Structure, 2017, 25, 1242-1250.e3.	3.3	83

#	Article	IF	CITATIONS
19	Escherichia coli Topoisomerase IV E Subunit and an Inhibitor Binding Mode Revealed by NMR Spectroscopy. Journal of Biological Chemistry, 2016, 291, 17743-17753.	3.4	15
20	Structure–Activity Relationship Studies of Mitogen Activated Protein Kinase Interacting Kinase (MNK) 1 and 2 and BCR-ABL1 Inhibitors Targeting Chronic Myeloid Leukemic Cells. Journal of Medicinal Chemistry, 2016, 59, 3063-3078.	6.4	16
21	Peptidomimetic ethyl propenoate covalent inhibitors of the enterovirus 71 3C protease: a P2–P4 study. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 332-339.	5.2	10
22	Artificial Neural Network Analysis of Pharmacokinetic and Toxicity Properties of Lead Molecules for Dengue Fever, Tuberculosis and Malaria. Current Computer-Aided Drug Design, 2016, 12, 52-61.	1.2	2
23	Application of Fragmentâ€Based Drug Discovery against DNA Gyraseâ€B. ChemPlusChem, 2015, 80, 1250-125-	4.2.8	14
24	Discovery and Optimization of a Porcupine Inhibitor. Journal of Medicinal Chemistry, 2015, 58, 5889-5899.	6.4	35
25	Pharmacophore Model for Wnt/Porcupine Inhibitors and Its Use in Drug Design. Journal of Chemical Information and Modeling, 2015, 55, 1435-1448.	5.4	21
26	Characterization of the interaction between Escherichia coli topoisomerase IV E subunit and an ATP competitive inhibitor. Biochemical and Biophysical Research Communications, 2015, 467, 961-966.	2.1	7
27	The use of porcupine inhibitors to target Wnt-driven cancers. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5472-5476.	2.2	43
28	Discovery and Optimization of 4-(8-(3-Fluorophenyl)-1,7-naphthyridin-6-yl)transcyclohexanecarboxylic Acid, an Improved PDE4 Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease (COPD). Journal of Medicinal Chemistry, 2015, 58, 6747-6752.	6.4	12
29	Biophysical Studies of Bacterial Topoisomerases Substantiate Their Binding Modes to an Inhibitor. Biophysical Journal, 2015, 109, 1969-1977.	0.5	6
30	NMR structural characterization of the Nâ€ŧerminal active domain of the gyrase B subunit from <i>Pseudomonas aeruginosa</i> and its complex with an inhibitor. FEBS Letters, 2015, 589, 2683-2689.	2.8	12
31	Drug Design For Flavivirus Proteases: What Are We Missing?. Current Pharmaceutical Design, 2014, 20, 3422-3427.	1.9	30
32	Exploring the binding of peptidic West Nile virus NS2B–NS3 protease inhibitors by NMR. Antiviral Research, 2013, 97, 137-144.	4.1	33
33	The importance of molecular complexity in the design of screening libraries. Journal of Computer-Aided Molecular Design, 2013, 27, 783-792.	2.9	11
34	Fragment-Based Ligand Design of Novel Potent Inhibitors of Tankyrases. Journal of Medicinal Chemistry, 2013, 56, 4497-4508.	6.4	59
35	NMR Analysis of a Novel Enzymatically Active Unlinked Dengue NS2B-NS3 Protease Complex. Journal of Biological Chemistry, 2013, 288, 12891-12900.	3.4	93
36	Dual Specific Inhibitors Of The BCR-ABL and MNK Kinases As Potential Therapeutics For Blast Crisis Chronic Myeloid Leukemia. Blood, 2013, 122, 2702-2702.	1.4	1

#	Article	IF	CITATIONS
37	Solubility-Driven Optimization of Phosphodiesterase-4 Inhibitors Leading to a Clinical Candidate. Journal of Medicinal Chemistry, 2012, 55, 7472-7479.	6.4	27
38	Development of isoform selective PI3-kinase inhibitors as pharmacological tools for elucidating the PI3K pathway. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5445-5450.	2.2	46
39	Mechanistic Study of the Spiroindolones: A New Class of Antimalarials. Molecules, 2012, 17, 10131-10141.	3.8	31
40	Indium mediated allylation in peptide and protein functionalization. Chemical Communications, 2011, 47, 9066.	4.1	24
41	Structure–Activity Relationships of Antitubercular Nitroimidazoles. 3. Exploration of the Linker and Lipophilic Tail of ((<i>></i>)-2-Nitro-6,7-dihydro-5 <i>H</i>)-imidazo[2,1- <i>b</i>)[1,3]oxazin-6-yl)-(4-trifluoromethoxybenzyl)amine (6 Amino PA 824) - Journal of Medicinal Chemistry, 2011, 54, 5639, 5659	6.4	38
42	Design and synthesis of a library of chemokine antagonists. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6249-6252.	2.2	7
43	Imidazolopiperazines: Hit to Lead Optimization of New Antimalarial Agents. Journal of Medicinal Chemistry, 2011, 54, 5116-5130.	6.4	91
44	Anti-infectives: Can cellular screening deliver?. Current Opinion in Chemical Biology, 2011, 15, 529-533.	6.1	23
45	State of the art technologies in drug discovery 2011. Current Opinion in Chemical Biology, 2011, 15, 461-462.	6.1	0
46	Dengue Drug Discovery. Topics in Medicinal Chemistry, 2011, , 243-275.	0.8	2
47	A Translation Inhibitor That Suppresses Dengue Virus <i>In Vitro</i> and <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 4072-4080.	3.2	43
48	Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase. Journal of Biological Chemistry, 2011, 286, 6233-6240.	3.4	147
49	Preclinical Evaluation of the Antifolate QN254, 5-Chloro- <i>N</i> ′6′-(2,5-Dimethoxy-Benzyl)-Quinazoline-2,4,6-Triamine, as an Antimalarial Drug Candidate. Antimicrobial Agents and Chemotherapy, 2010, 54, 2603-2610.	3.2	25
50	Spiroindolones, a Potent Compound Class for the Treatment of Malaria. Science, 2010, 329, 1175-1180.	12.6	1,031
51	A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nature Communications, 2010, 1, 57.	12.8	250
52	Inhibition of Dengue Virus Polymerase by Blocking of the RNA Tunnel. Journal of Virology, 2010, 84, 5678-5686.	3.4	104
53	Inhibition of Dengue Virus by an Ester Prodrug of an Adenosine Analog. Antimicrobial Agents and Chemotherapy, 2010, 54, 3255-3261.	3.2	48
54	Inhibition of Dengue Virus RNA Synthesis by an Adenosine Nucleoside. Antimicrobial Agents and Chemotherapy, 2010, 54, 2932-2939.	3.2	65

#	Article	IF	CITATIONS
55	Spirotetrahydro β-Carbolines (Spiroindolones): A New Class of Potent and Orally Efficacious Compounds for the Treatment of Malaria. Journal of Medicinal Chemistry, 2010, 53, 5155-5164.	6.4	381
56	The Identification of Indacaterol as an Ultralong-Acting Inhaled β ₂ -Adrenoceptor Agonist. Journal of Medicinal Chemistry, 2010, 53, 3675-3684.	6.4	90
57	Functionalization of Peptides and Proteins by Mukaiyama Aldol Reaction. Journal of the American Chemical Society, 2010, 132, 9546-9548.	13.7	61
58	Discovery of a Non-Peptidic Inhibitor of West Nile Virus NS3 Protease by High-Throughput Docking. PLoS Neglected Tropical Diseases, 2009, 3, e356.	3.0	71
59	A Small-Molecule Dengue Virus Entry Inhibitor. Antimicrobial Agents and Chemotherapy, 2009, 53, 1823-1831.	3.2	190
60	NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B–NS3 protease. FEBS Journal, 2009, 276, 4244-4255.	4.7	35
61	A fluorescence quenching assay to discriminate between specific and nonspecific inhibitors of dengue virus protease. Analytical Biochemistry, 2009, 395, 195-204.	2.4	92
62	<i>N</i> -Sulfonylanthranilic Acid Derivatives as Allosteric Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase. Journal of Medicinal Chemistry, 2009, 52, 7934-7937.	6.4	54
63	An adenosine nucleoside inhibitor of dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20435-20439.	7.1	323
64	Structureâ^'Activity Relationships of Antitubercular Nitroimidazoles. 2. Determinants of Aerobic Activity and Quantitative Structureâ^'Activity Relationships. Journal of Medicinal Chemistry, 2009, 52, 1329-1344.	6.4	82
65	Structureâ^'Activity Relationships of Antitubercular Nitroimidazoles. 1. Structural Features Associated with Aerobic and Anaerobic Activities of 4- and 5-Nitroimidazoles. Journal of Medicinal Chemistry, 2009, 52, 1317-1328.	6.4	101
66	Synthesis and antitubercular activity of 7-(R)- and 7-(S)-methyl-2-nitro-6-(S)-(4-(trifluoromethoxy)benzyloxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazines, analogues of PA-824. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2256-2262.	2.2	62
67	Peptide deformylase inhibitors of Mycobacterium tuberculosis: Synthesis, structural investigations, and biological results. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6568-6572.	2.2	37
68	Impact of non-profit organizations on drug discovery: opportunities, gaps, solutions. Drug Discovery Today, 2008, 13, 347-352.	6.4	17
69	PA-824 Kills Nonreplicating <i>Mycobacterium tuberculosis</i> by Intracellular NO Release. Science, 2008, 322, 1392-1395.	12.6	568
70	Global Bayesian Models for the Prioritization of Antitubercular Agents. Journal of Chemical Information and Modeling, 2008, 48, 2362-2370.	5.4	89
71	Lipiarmycin targets RNA polymerase and has good activity against multidrug-resistant strains of Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2008, 62, 713-719.	3.0	92
72	Finding New Medicines for Flaviviral Targets. Novartis Foundation Symposium, 2008, , 102-119.	1.1	34

#	Article	IF	CITATIONS
73	Yellow fever virus NS3 protease: peptide-inhibition studies. Journal of General Virology, 2007, 88, 2223-2227.	2.9	29
74	Potent and selective xanthine-based inhibitors of phosphodiesterase 5. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2376-2379.	2.2	10
75	Peptide Inhibitors of West Nile NS3 Protease:  SAR Study of Tetrapeptide Aldehyde Inhibitors. Journal of Medicinal Chemistry, 2006, 49, 6585-6590.	6.4	79
76	Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nature Structural and Molecular Biology, 2006, 13, 372-373.	8.2	478
77	Peptide inhibitors of dengue virus NS3 protease. Part 2: SAR study of tetrapeptide aldehyde inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 40-43.	2.2	142
78	Peptide inhibitors of dengue virus NS3 protease. Part 1: Warhead. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 36-39.	2.2	152
79	A practical view of â€~druggability'. Current Opinion in Chemical Biology, 2006, 10, 357-361.	6.1	257
80	Finding new medicines for flaviviral targets. Novartis Foundation Symposium, 2006, 277, 102-14; discussion 114-9, 251-3.	1.1	21
81	CGH2466, a combined adenosine receptor antagonist, p38 mitogen-activated protein kinase and phosphodiesterase type 4 inhibitor with potent in vitro and in vivo anti-inflammatory activities. British Journal of Pharmacology, 2005, 144, 1002-1010.	5.4	19
82	A new orally bioavailable dual adenosine A2B/A3 receptor antagonist with therapeutic potential. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3081-3085.	2.2	31
83	Synthesis and biological properties of novel glucocorticoid androstene C-17 furoate esters. Bioorganic and Medicinal Chemistry, 2004, 12, 5213-5224.	3.0	23
84	New Highly Potent and Selective Adenosine A3 Receptor Antagonists. Current Topics in Medicinal Chemistry, 2004, 4, 863-870.	2.1	18
85	Pharmacological profile of PKF242â€484 and PKF241â€466, novel dual inhibitors of TNFâ€Î± converting enzyme and matrix metalloproteinases, in models of airway inflammation. British Journal of Pharmacology, 2002, 135, 1655-1664.	5.4	83
86	Synthesis and Structure-Activity Relationship of N-Arylrolipram Derivatives as Inhibitors of PDE4 Isozymes Chemical and Pharmaceutical Bulletin, 2001, 49, 1009-1017.	1.3	12
87	N-Arylrolipram derivatives as potent and selective PDE4 inhibitors. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 3229-3234.	2.2	10
88	Synthesis of N-Arylrolipram Derivatives - Potent and Selective Phosphodiesterase-IV Inhibitors - by Copper Catalyzed Lactam-Aryl Halide Coupling. Heterocycles, 1998, 48, 2225.	0.7	6
89	Enantiodivergent Synthesis of (R)- and (S)-Rolipram. Molecules, 1998, 3, 107-119.	3.8	31
90	The Crystal Structures of the SH2 Domain of p56lckComplexed with Two Phosphonopeptides Suggest a Gated Peptide Binding Site. Journal of Molecular Biology, 1995, 246, 344-355.	4.2	41

#	Article	IF	CITATIONS
91	Probing the specificity of the S1 binding site of subtilisin Carlsberg with boronic acids. Bioorganic and Medicinal Chemistry, 1994, 2, 35-48.	3.0	26
92	A General Method for the Synthesis of 2′-O-Modified Ribonucleosides. Helvetica Chimica Acta, 1993, 76, 884-892.	1.6	24
93	Synthesis and hybridization properties of oligonucleotides containing 2'-O-modified ribonucleotides. Nucleic Acids Research, 1993, 21, 4499-4505.	14.5	28
94	Probing the specificity of the S1 binding site of subtilisin Carlsberg with boronic acids. Biochemical and Biophysical Research Communications, 1991, 176, 401-405.	2.1	14
95	Palladium(0)- and nickel(0) catalyzed "metallo-ene-type―cyclizations: Stereodirecting resident chirality Tetrahedron Letters, 1990, 31, 1265-1268.	1.4	39
96	Conformationally controlled reductions of 14-membered macrolides. Tetrahedron Letters, 1990, 31, 6307-6310.	1.4	12
97	Diastereoselective reduction of 9-oxo-13-tetradecanolide and 10,10-dimethyl-9-oxo-13-tetradecanolide. Journal of the American Chemical Society, 1990, 112, 450-452.	13.7	18
98	Diastereocontrolled nickel(0)- and palladium(0) catalyzed "metallo-ene-type― cyclizations/carbonylations. Tetrahedron Letters, 1989, 30, 5883-5886.	1.4	68
99	Conformational analysis of 14-membered macrolides using x-ray crystallography and molecular mechanics calculations. Journal of the American Chemical Society, 1988, 110, 7858-7868.	13.7	35
100	Use of difference NOE experiments to assign the geometry of trimethylsilyl enol ethers. Journal of Organic Chemistry, 1987, 52, 1870-1872.	3.2	10