Christopher D Gregory

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6009879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Apoptosis Paradox in Cancer. International Journal of Molecular Sciences, 2022, 23, 1328.	1.8	96
2	The transformative impact of extracellular vesicles on developing sperm. Reproduction and Fertility, 2021, 2, R51-R66.	0.6	8
3	Extracellular vesicles in urological malignancies. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188570.	3.3	7
4	Phenotypic analysis of extracellular vesicles: a review on the applications of fluorescence. Journal of Extracellular Vesicles, 2020, 9, 1710020.	5.5	79
5	An Orally Active Galectin-3 Antagonist Inhibits Lung Adenocarcinoma Growth and Augments Response to PD-L1 Blockade. Cancer Research, 2019, 79, 1480-1492.	0.4	87
6	Moving beyond size and phosphatidylserine exposure: evidence for a diversity of apoptotic cellâ€derived extracellular vesicles <i>in vitro</i> . Journal of Extracellular Vesicles, 2019, 8, 1608786.	5.5	98
7	The STAT3–IL-10–IL-6 Pathway Is a Novel Regulator of Macrophage Efferocytosis and Phenotypic Conversion in Sterile Liver Injury. Journal of Immunology, 2018, 200, 1169-1187.	0.4	74
8	An apoptosis-driven â€~onco-regenerative niche': roles of tumour-associated macrophages and extracellular vesicles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170003.	1.8	48
9	Editorial: The Immunomodulatory Properties of Extracellular Vesicles From Pathogens, Immune Cells, and Non-immune Cells. Frontiers in Immunology, 2018, 9, 3024.	2.2	11
10	Apoptotic Tumor Cell-Derived Extracellular Vesicles as Important Regulators of the Onco-Regenerative Niche. Frontiers in Immunology, 2018, 9, 1111.	2.2	50
11	Translationally Controlled Tumor Protein in Extracellular Vehicles: Dangerous Cargo?. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 407-409.	1.4	0
12	Modulation of macrophage antitumor potential by apoptotic lymphoma cells. Cell Death and Differentiation, 2017, 24, 971-983.	5.0	51
13	A Trp-BODIPY cyclic peptide for fluorescence labelling of apoptotic bodies. Chemical Communications, 2017, 53, 945-948.	2.2	67
14	Extracellular Vesicles Arising from Apoptotic Cells in Tumors: Roles in Cancer Pathogenesis and Potential Clinical Applications. Frontiers in Immunology, 2017, 8, 1174.	2.2	51
15	Vasopressin Regulates Extracellular Vesicle Uptake by Kidney Collecting Duct Cells. Journal of the American Society of Nephrology: JASN, 2016, 27, 3345-3355.	3.0	48
16	Microenvironmental Effects of Cell Death in Malignant Disease. Advances in Experimental Medicine and Biology, 2016, 930, 51-88.	0.8	29
17	Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma. Current Biology, 2015, 25, 577-588.	1.8	96
18	Sinister Self-Sacrifice: The Contribution of Apoptosis to Malignancy. Frontiers in Immunology, 2014, 5, 299.	2.2	19

#	Article	IF	CITATIONS
19	The disassembly of death. Nature, 2014, 507, 312-313.	13.7	6
20	CD133+ Cancer Stem-like Cells in Small Cell Lung Cancer Are Highly Tumorigenic and Chemoresistant but Sensitive to a Novel Neuropeptide Antagonist. Cancer Research, 2014, 74, 1554-1565.	0.4	166
21	Macrophages Engulfing Apoptotic Cells Produce Nonclassical Retinoids To Enhance Their Phagocytic Capacity. Journal of Immunology, 2014, 192, 5730-5738.	0.4	40
22	Coexpression analysis of large cancer datasets provides insight into the cellular phenotypes of the tumour microenvironment. BMC Genomics, 2013, 14, 469.	1.2	39
23	Inflammation and cancer revisited: An hypothesis on the oncogenic potential of the apoptotic tumor cell. Autoimmunity, 2013, 46, 312-316.	1.2	7
24	Quantification of human urinary exosomes by nanoparticle tracking analysis. Journal of Physiology, 2013, 591, 5833-5842.	1.3	176
25	Pure populations of murine macrophages from cultured embryonic stem cells. Application to studies of chemotaxis and apoptotic cell clearance. Journal of Immunological Methods, 2012, 385, 1-14.	0.6	22
26	Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. Journal of Pathology, 2011, 223, 178-195.	2.1	163
27	Leukocyte migratory responses to apoptosis. Cell Adhesion and Migration, 2011, 5, 293-297.	1.1	4
28	Microenvironmental influences of apoptosis inÂvivo and inÂvitro. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 1029-1049.	2.2	89
29	Inhibition of eosinophil migration by lactoferrin. Immunology and Cell Biology, 2010, 88, 220-223.	1.0	78
30	Inhibitory effects of persistent apoptotic cells on monoclonal antibody production in vitro. MAbs, 2009, 1, 370-376.	2.6	21
31	Trappin-2 Promotes Early Clearance of Pseudomonas aeruginosa through CD14-Dependent Macrophage Activation and Neutrophil Recruitment. American Journal of Pathology, 2009, 174, 1338-1346.	1.9	37
32	Results of Defective Clearance of Apoptotic Cells: Lessons from Knock-out Mouse Models. , 2009, , 271-298.		5
33	Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. Journal of Clinical Investigation, 2009, 119, 20-32.	3.9	177
34	Innate immune mechanisms in the resolution of inflammation. , 2008, , 39-56.		2
35	CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood, 2008, 112, 5026-5036.	0.6	385
36	"Dirty little secretsâ€â€"Endotoxin contamination of recombinant proteins. Immunology Letters, 2006, 106, 1-7.	1.1	85

#	Article	IF	CITATIONS
37	Lymphoma cells protected from apoptosis by dysregulated bcl-2 continue to bind Annexin V in response to B-cell receptor engagement: A cautionary tale. Leukemia Research, 2006, 30, 77-80.	0.4	9
38	Apoptosis: eating sensibly. Nature Cell Biology, 2005, 7, 1161-1163.	4.6	92
39	Enhanced Apoptotic Cell Clearance Capacity and B Cell Survival Factor Production by IL-10-Activated Macrophages: Implications for Burkitt's Lymphoma. Journal of Immunology, 2005, 174, 3015-3023.	0.4	127
40	Apoptosis: eating sensibly. Nature Cell Biology, 2005, 7, 1061-1063.	4.6	22
41	Persistence of apoptotic cells without autoimmune disease or inflammation in CD14â^'/â^' mice. Journal of Cell Biology, 2004, 167, 1161-1170.	2.3	127
42	Measurement of Apoptotic Cell Clearance In Vitro. , 2004, 282, 207-222.		5
43	The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically?. Immunology, 2004, 113, 1-14.	2.0	241
44	Macrophage chemotaxis to apoptotic Burkitt's lymphoma cells in vitro: role of CD14 and CD36. Immunobiology, 2004, 209, 21-30.	0.8	18
45	Selective serotonin reuptake inhibitors directly signal for apoptosis in biopsy-like Burkitt lymphoma cells. Blood, 2003, 101, 3212-3219.	0.6	158
46	Population depletion activates autonomous CD154-dependent survival in biopsylike Burkitt lymphoma cells. Blood, 2002, 99, 3411-3418.	0.6	30
47	5-Hydroxytryptamine drives apoptosis in biopsylike Burkitt lymphoma cells: reversal by selective serotonin reuptake inhibitors. Blood, 2002, 99, 2545-2553.	0.6	82
48	CD95 (Fas) expression is regulated by sequestration in the Golgi complex in B-cell lymphoma. British Journal of Haematology, 2002, 118, 488-494.	1.2	12
49	A blast from the past: clearance of apoptotic cells regulates immune responses. Nature Reviews Immunology, 2002, 2, 965-975.	10.6	1,451
50	CD14-dependent clearance of apoptotic cells: relevance to the immune system. Current Opinion in Immunology, 2000, 12, 27-34.	2.4	176
51	Distinct Role of Follicular Dendritic Cells and T Cells in the Proliferation, Differentiation, and Apoptosis of a Centroblast Cell Line, L3055. Journal of Immunology, 2000, 164, 56-63.	0.4	65
52	Minimal cross-linking and epitope requirements for CD40-dependent suppression of apoptosis contrast with those for promotion of the cell cycle and homotypic adhesions in human B cells. International Immunology, 1999, 11, 11-20.	1.8	58
53	Flow Cytometric Methods of Analyzing Apoptotic Cells. Methods in Molecular Biology, 1998, 80, 347-354.	0.4	32
54	Human Cells Arrest in S Phase in Response to Adenovirus 12 E1A. Virology, 1998, 244, 330-342.	1.1	29

CHRISTOPHER D GREGORY

#	Article	IF	CITATIONS
55	Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature, 1998, 392, 505-509.	13.7	629
56	Phagocytic clearance of apoptotic cells: food for thought. Cell Death and Differentiation, 1998, 5, 549-550.	5.0	15
57	Homology between a human apoptosis specific protein and the product of APC5 , a gene involved in autophagy in yeast. FEBS Letters, 1998, 425, 391-395.	1.3	74
58	Prolonged Phenotypic, Functional, and Molecular Change in Group I Burkitt Lymphoma Cells on Short-Term Exposure to CD40 Ligand. Blood, 1998, 92, 2830-2843.	0.6	46
59	Prolonged Phenotypic, Functional, and Molecular Change in Group I Burkitt Lymphoma Cells on Short-Term Exposure to CD40 Ligand. Blood, 1998, 92, 2830-2843.	0.6	5
60	Differential effects of BCL-2 on survival and proliferation of human B-lymphoma cells following Î ³ -irradiation. Oncogene, 1997, 15, 1815-1822.	2.6	22
61	Mechanisms of Antigen Receptor-Dependent Apoptosis of Human B Lymphoma Cells Probed with a Panel of 27 Monoclonal Antibodies. Cellular Immunology, 1997, 182, 45-56.	1.4	21
62	Bcl-2 delays macrophage engulfment of human B cells induced to undergo apoptosis. European Journal of Immunology, 1996, 26, 2243-2247.	1.6	10
63	Apoptosis in Hematopoiesis and Leukemogenesis. Blood Cell Biochemistry, 1996, , 151-201.	0.3	4
64	Signals for Survival and Apoptosis in Normal and Neoplastic B Lymphocytes. Advances in Experimental Medicine and Biology, 1996, 406, 139-144.	0.8	5
65	Effects of interferon-α on human b cells: Repression of apoptosis and prevention of cell growth are independent responses of burkitt lymphoma lines. International Journal of Cancer, 1995, 61, 348-354.	2.3	23
66	A Novel Protein Expressed in Mammalian Cells Undergoing Apoptosis. Experimental Cell Research, 1995, 218, 439-451.	1.2	61
67	Regulation of cell survival in burkitt lymphoma: Implications from studies of apoptosis following cold-shock treatment. International Journal of Cancer, 1994, 57, 419-426.	2.3	51
68	Recognition of apoptotic cells by human macrophages: inhibition by a monocyte/macrophage-specific monoclonal antibody. European Journal of Immunology, 1994, 24, 2625-2632.	1.6	127
69	Irradiated fibroblasts protect burkitt lymphoma cells from apoptosis by a mechanism independent of BCL-2. International Journal of Cancer, 1993, 55, 485-491.	2.3	29
70	Suppression of apoptosis in normal and neoplastic human B lymphocytes by CD40 ligand is independent of Bcl-2 induction. European Journal of Immunology, 1993, 23, 2368-2371.	1.6	177
71	IL-2 expands and maintains IgM plasmablasts from a CD5+ subset contained within the germinal centre cell-enriched (surface IgDâ^'/CD39â^' buoyant) fraction of human tonsil. International Immunology, 1993, 5, 1059-1066.	1.8	21
72	Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1133, 275-285.	1.9	483

0

#	Article	IF	CITATIONS
73	Elevated expression of ICAM1 (CD54) and minimal expression of LFA3 (CD58) in epstein-barr-virus-positive nasopharyngeal carcinoma cells. International Journal of Cancer, 1992, 50, 863-867.	2.3	39
74	Prevention of programmed cell death in burkitt lymphoma cell lines bybcl-2-dependent and -independent mechanisms. International Journal of Cancer, 1992, 52, 636-644.	2.3	64
75	Second-messenger pathways involved in the regulation of survival in germinal-centre B cells and in burkitt lymphoma lines. International Journal of Cancer, 1992, 52, 959-966.	2.3	47
76	Induction of bcl-2 expression by epstein-barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell, 1991, 65, 1107-1115.	13.5	1,219
77	Activation of Epstein–Barr virus latent genes protects human B cells from death by apoptosis. Nature, 1991, 349, 612-614.	13.7	540
78	Germinal center cells express bcl-2 protein after activation by signals which prevent their entry into apoptosis. European Journal of Immunology, 1991, 21, 1905-1910.	1.6	435
79	Epstein-Barr virus-transformed human precursor B cell lines: altered growth phenotype of lines with germline or rearranged but nonexpressed heavy chain genes. European Journal of Immunology, 1987, 17, 1199-1207.	1.6	71
80	Quantitative ultrastructure of cytolytic lymphocytes mediating allograft rejection in the mouse. Vigiliae Christianae, 1984, 47, 329-345.	0.1	2
81	Innate Immunity and Apoptosis: CD14-Dependent Clearance of Apoptotic Cells. , 0, , 111-131.		0

82 Flow Cytometric Methods of Analyzing Apoptotic Cells. , 0, , 347-354.