Sumit Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/600987/publications.pdf Version: 2024-02-01

SUMIT SADKAD

#	Article	IF	CITATIONS
1	Endoplasmic Reticulum Stress Plays a Central Role in Development of Leptin Resistance. Cell Metabolism, 2009, 9, 35-51.	7.2	770
2	Neuroprotective and Therapeutic Strategies against Parkinson's Disease: Recent Perspectives. International Journal of Molecular Sciences, 2016, 17, 904.	1.8	146
3	Neuroprotective effect of the chemical chaperone, trehalose in a chronic MPTP-induced Parkinson's disease mouse model. NeuroToxicology, 2014, 44, 250-262.	1.4	103
4	Glucagon like peptide-1 (7-36) amide (GLP-1) nerve terminals densely innervate corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Brain Research, 2003, 985, 163-168.	1.1	96
5	Role of metals in Alzheimer's disease. Metabolic Brain Disease, 2021, 36, 1627-1639.	1.4	62
6	Longitudinal behavioral changes in the APP/PS1 transgenic Alzheimer's Disease model. Behavioural Brain Research, 2013, 242, 125-134.	1.2	41
7	Amyloid Beta 25–35 induces blood-brain barrier disruption in vitro. Metabolic Brain Disease, 2019, 34, 1365-1374.	1.4	35
8	Neuropeptide Y Has a Central Inhibitory Action on the Hypothalamic-Pituitary-Thyroid Axis. , 0, .		34
9	Microglial activation and responses to vasculature that result from an acute LPS exposure. NeuroToxicology, 2020, 77, 181-192.	1.4	30
10	Introducing Amylo-Glo, a novel fluorescent amyloid specific histochemical tracer especially suited for multiple labeling and large scale quantification studies. Journal of Neuroscience Methods, 2012, 209, 120-126.	1.3	27
11	Neuroprotective effects of acetyl-l-carnitine (ALC) in a chronic MPTP-induced Parkinson's disease mouse model: Endothelial and microglial effects. Neuroscience Letters, 2019, 703, 86-95.	1.0	26
12	Tauroursodeoxycholic acid (TUDCA) is neuroprotective in a chronic mouse model of Parkinson's disease. Nutritional Neuroscience, 2022, 25, 1374-1391.	1.5	25
13	Neurovascular Changes in Acute, sub-Acute and Chronic Mouse Models of Parkinson's Disease. Current Neurovascular Research, 2014, 11, 48-61.	0.4	23
14	Protein Kinases and Parkinson's Disease. International Journal of Molecular Sciences, 2016, 17, 1585.	1.8	22
15	Vascular-directed responses of microglia produced by methamphetamine exposure: indirect evidence that microglia are involved in vascular repair?. Journal of Neuroinflammation, 2016, 13, 64.	3.1	21
16	Chronic MPTP treatment produces hyperactivity in male mice which is not alleviated by concurrent trehalose treatment. Behavioural Brain Research, 2015, 292, 68-78.	1.2	19
17	Corticosterone and exogenous glucose alter blood glucose levels, neurotoxicity, and vascular toxicity produced by methamphetamine. Journal of Neurochemistry, 2017, 143, 198-213.	2.1	18
18	Identification of altered microRNAs in serum of a mouse model of Parkinson's disease. Neuroscience Letters, 2018, 687, 1-9.	1.0	18

SUMIT SARKAR

#	Article	IF	CITATIONS
19	Microglial activation and vascular responses that are associated with early thalamic neurodegeneration resulting from thiamine deficiency. NeuroToxicology, 2018, 65, 98-110.	1.4	17
20	Changes in the metabolome and microRNA levels in biological fluids might represent biomarkers of neurotoxicity: A trimethyltin study. Experimental Biology and Medicine, 2018, 243, 228-236.	1.1	17
21	Kainic acid and 3-Nitropropionic acid induced expression of laminin in vascular elements of the rat brain. Brain Research, 2010, 1352, 239-247.	1.1	12
22	Brain endothelial dysfunction following pyrithiamine induced thiamine deficiency in the rat. NeuroToxicology, 2016, 57, 298-309.	1.4	12
23	Systemic Administration of Fluoro-Gold for the Histological Assessment of Vascular Structure, Integrity and Damage. Current Neurovascular Research, 2014, 11, 31-47.	0.4	9
24	Decreased Mcl-1 protein level in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Brain Research, 2018, 1678, 432-439.	1.1	9
25	Increased inflammation in BA21 brain tissue from African Americans with Alzheimer's disease. Metabolic Brain Disease, 2020, 35, 121-133.	1.4	9
26	Modification of methods to use Congo-red stain to simultaneously visualize amyloid plaques and tangles in human and rodent brain tissue sections. Metabolic Brain Disease, 2020, 35, 1371-1383.	1.4	9
27	Impaired Amyloid Beta Clearance and Brain Microvascular Dysfunction are Present in the Tg-SwDI Mouse Model of Alzheimer's Disease. Neuroscience, 2020, 440, 48-55.	1.1	8
28	Temporal Progression of Kainic Acid Induced Changes in Vascular Laminin Expression in Rat Brain with Neuronal and Glial Correlates. Current Neurovascular Research, 2012, 9, 110-119.	0.4	7
29	In situ demonstration of Fluoro-Turquoise conjugated gelatin for visualizing brain vasculature and endothelial cells and their characterization in normal and kainic acid exposed animals. Journal of Neuroscience Methods, 2013, 219, 276-284.	1.3	7
30	The time course of blood brain barrier leakage and its implications on the progression of methamphetamine-induced seizures. NeuroToxicology, 2018, 69, 130-140.	1.4	7
31	In vivo administration of fluorescent dextrans for the specific and sensitive localization of brain vascular pericytes and their characterization in normal and neurotoxin exposed brains. NeuroToxicology, 2012, 33, 436-443.	1.4	6
32	In vivo demonstration of Congo Red labeled amyloid plaques via perfusion in the Alzheimer disease rat model. Journal of Neuroscience Methods, 2021, 353, 109082.	1.3	6
33	The Use of Recently Developed Histochemical Markers for Localizing Neurotoxicant Induced Regional Brain Pathologies. Toxins, 2014, 6, 1453-1470.	1.5	4
34	Alzheimer's disease: a step closer to understanding type 3 diabetes in African Americans. Metabolic Brain Disease, 2021, 36, 1803-1816.	1.4	4
35	Assessment of sex-related neuropathology and cognitive deficits in the Tg-SwDI mouse model of Alzheimer's disease. Behavioural Brain Research, 2022, 428, 113882.	1.2	4
36	Oral Administration of Thioflavin T Prevents Beta Amyloid Plaque Formation in Double Transgenic AD Mice. Current Alzheimer Research, 2015, 12, 837-846.	0.7	3

#	Article	IF	CITATIONS
37	Evaluation of Styrylbenzene analog- FSB and its affinity to bind parenchymal plaques and tangles in patients of Alzheimer's disease. Metabolic Brain Disease, 2022, 37, 639-651.	1.4	Ο