Arieh Iserles

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/6009617/publications.pdf
Version: 2024-02-01

Fast Computation of Orthogonal Systems with a <scp> Skewâ€Symmetric</scp> Differentiation Matrix.
Communications on Pure and Applied Mathematics, 2021, 74, 478-506.

A Family of Orthogonal Rational Functions and Other Orthogonal Systems with a skew-Hermitian Differentiation Matrix. Journal of Fourier Analysis and Applications, 2020, 26, 1.
1.0

Compact schemes for laserâ€"matter interaction in SchrÃ千dinger equation based on effective splittings
of Magnus expansion. Computer Physics Communications, 2019, 234, 195-201.

Spectral computation of highly oscillatory integral equations in laser theory. Journal of Computational Physics, 2019, 395, 351-381.

Orthogonal Systems with a Skew-Symmetric Differentiation Matrix. Foundations of Computational
Mathematics, 2019, 19, 1191-1221.

Solving SchrÃๆdinger equation in semiclassical regime with highly oscillatory time-dependent potentials. Journal of Computational Physics, 2019, 376, 564-584.
3.8

Solving the wave equation with multifrequency oscillations. Journal of Computational Dynamics,
2019, 6, 239-249.

Symmetric and arbitrarily high-order Birkhoffâ€"Hermite time integrators and their long-time
8 behaviour for solving nonlinear Kleinâ E"Gordon equations. Journal of Computational Physics, 2018, 2 356, 1-30.

9 An Adaptive Filon Algorithm for Highly Oscillatory Integrals. , 2018, , 407-424.

Magnus--Lanczos Methods with Simplified Commutators for the SchrÃ厅dinger Equation with a
Time-Dependent Potential. SIAM Journal on Numerical Analysis, 2018, 56, 1547-1569.

11 Banded, skew-symmetric differentiation matrices of high order. AlP Conference Proceedings, 2017, , .
$0.4 \quad 0$

12 A generalization of Filonâ€"Clenshawâ€"Curtis quadrature for highly oscillatory integrals. BIT Numerical Mathematics, 2017, 57, 943-961.

Error analysis of the extended Filon-type method for highly oscillatory integrals. Research in
Mathematical Sciences, 2017, 4, 1.

The Joy and Pain of Skew Symmetry. Foundations of Computational Mathematics, 2016, 16, 1607-1630.
2.5

Arbitrary-Order Trigonometric Fourier Collocation Methods for Multi-Frequency Oscillatory
Systems. Foundations of Computational Mathematics, 2016, 16, 151-181.

Numerical Stability in the Presence of Variable Coefficients. Foundations of Computational
Mathematics, 2016, 16, 751-777.

Numerical solution of Sturmâ€"Liouville problems via Fer streamers. Numerische Mathematik, 2015, 131,
541-565.

Asymptotic solvers for second-order differential equation systems with multiple frequencies.
Calcolo, 2014, 51, 109-139.
On Rapid Computation of Expansions in Ultraspherical Polynomials. SIAM Journal on Numerical
Analysis, 2012, 50, 307-327.

22 Explicit adaptive symplectic integrators for solving Hamiltonian systems. Celestial Mechanics and
Spectral theory of large Wienerâ€"Hopf operators with complex-symmetric kernels and rational
symbols. Mathematical Proceedings of the Cambridge Philosophical Society, 2011, 151, 161-191.

$24 \quad$| A Class of Integrable Flows on the Space of Symmetric Matrices. Communications in Mathematical |
| :--- |
| Physics, 2009, 290, 399-435. |

Change of Editorship. IMA Journal of Numerical Analysis, 2007, 27, i-i.

Quadrature methods for multivariate highly oscillatory integrals using derivatives. Mathematics of Computation, 2006, 75, 1233-1259.
27 On an Isospectral Lieâ€"Poisson System and Its Lie Algebra. Foundations of Computational Mathematics, 2006, 6, 121-144.
29 On the numerical quadrature of highly-oscillating integrals II: Irregular oscillators. IMA Journal of
Numerical Analysis, 2005, 25, 25-44.

Think globally, act locally: Solving highly-oscillatory ordinary differential equations. Applied
Numerical Mathematics, 2002, 43, 145-160.

38 Title is missing!. BIT Numerical Mathematics, 2002, 42, 561-599.
2.0

73

39 Semi-explicit methods for isospectral flows. Advances in Computational Mathematics, 2001, 14, 1-24.
1.6

40 Optimal acceleration of convergence. Methods and Applications of Analysis, 2001, 8, 15-32.
0.5

0
41 Lie-group methods. Acta Numerica, 2000, 9, 215-365. $\quad 10.74606$

Preserving algebraic invariants with Rungeâ€"Kutta methods. Journal of Computational and Applied
Mathematics, 2000, 125, 69-81.

On the Dimension of Certain Graded Lie Algebras Arising in Geometric Integration of Differential
Equations. LMS Journal of Computation and Mathematics, 2000, 3, 44-75.
$0.9 \quad 4$

44 Approximating the exponential from a Lie algebra to a Lie group. Mathematics of Computation, 2000, 69, 1457-1481.
2.1

69

45	Approximately preserving symmetries in the numerical integration of ordinary differential equations. European Journal of Applied Mathematics, 1999, 10, 419-445.	2.9
46	Runge-Kutta methods for quadratic ordinary differential equations. BIT Numerical Mathematics, 1998, 38, 315-346.	2.0

$47 \quad$ Numerical solution of isospectral flows. Mathematics of Computation, 1997, 66, 1461-1487.

2.1

82

48 Exact and discretized stability of the pantograph equation. Applied Numerical Mathematics, 1997, 24, 295-308.
$2.1 \quad 47$
$1.0 \quad 66$
Analysis and Applications, 1997, 207, 73-95.

Integro-differential Equations and Generalized Hypergeometric Functions. Journal of Mathematical
1.0

50 Analysis and Applications, 1997, 208, 404-424.
16
1.9

0
$55 \quad$ Global Bounds on Numerical Error for Ordinary Differential Equations. Journal of Complexity, 1993, 9, 97-112.

Stability of the discretized pantograph differential equation. Mathematics of Computation, 1993, 60, 575-589.

Biorthogonality and Its Applications to Numerical Analysis.. Mathematics of Computation, 1993, 60, 855.

Rational Approximations to the Exponential Function with Two Complex Conjugate Interpolation Points. SIAM Journal on Mathematical Analysis, 1985, 16, 814-821.

59 A proof of the first dahlquist barrier by order stars. BIT Numerical Mathematics, 1984, 24, 529-537.
2.0

10

60 Composite Methods for Numerical Solution of Stiff Systems of ODEâ E^{TM} s. SIAM Journal on Numerical
Analysis, 1984, 21, 340-351.

61 Barriers to Stability. SIAM Journal on Numerical Analysis, 1983, 20, 1251-1257.
2.3

The optimal accuracy of difference schemes. Transactions of the American Mathematical Society, 1983, 277, 779-803.

Order Stars and a Saturation Theorem for First-order Hyperbolics. IMA Journal of Numerical Analysis,
1982, 2, 49-61.

64 Composite exponential approximations. Mathematics of Computation, 1982, 38, 99-112.
2.1

12

Rational Interpolation to $\$ \exp (-x) \$$ with Application to Certain Stiff Systems. SIAM Journal on
Numerical Analysis, 1981, 18, 1-12.

On Multivalued Exponential Approximations. SIAM Journal on Numerical Analysis, 1981, 18, 480-499.
2.3

Efficient Two-Step Numerical Methods for Parabolic Differential Equations. North-Holland Mathematics Studies, 1981, 47, 319-326.
0.2

0

On theA-Acceptability of PadÃ© Approximations. SIAM Journal on Mathematical Analysis, 1979, 10, 1002-1007.

A note on Pad $\AA \bigcirc$ approximations and generalized hypergeometric functions. BIT Numerical Mathematics, 1979, 19, 543-545.

On the Generalized PadÃ® Approximations to the Exponential Function. SIAM Journal on Numerical Analysis, 1979, 16, 631-636.

A-acceptable exponentially fitted combinations of three PadÃ@ approximations. Journal of
Computational and Applied Mathematics, 1978, 4, 143-146.
2.0

