Arieh Iserles

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/6009617/publications.pdf
Version: 2024-02-01

1 Lie-group methods. Acta Numerica, 2000, 9, 215-365. 10.7 606
2 Efficient quadrature of highly oscillatory integrals using derivatives. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461, 1383-1399.2.1249
On the numerical quadrature of highly-oscillating integrals I: Fourier transforms. IMA Journal of 2.9 115
Numerical Analysis, 2004, 24, 365-391.
Stability of the discretized pantograph differential equation. Mathematics of Computation, 1993, 60,2.1
575-589
6 Numerical solution of isospectral flows. Mathematics of Computation, 1997, 66, 1461-1487. 2.1 82
7 Title is missing!. BIT Numerical Mathematics, 2002, 42, 561-599. 2.0 738 Approximating the exponential from a Lie algebra to a Lie group. Mathematics of Computation, 2000, 69,1457-1481.2.169
9 On Neutral Functionalâ€"Differential Equations with Proportional Delays. Journal of Mathematical Analysis and Applications, 1997, 207, 73-95.
11 On the numerical quadrature of highly-oscillating integrals II: Irregular oscillators. IMA Journal of
Numerical Analysis, 2005, 25, 25-44.
2.9 64
12 Quadrature methods for multivariate highly oscillatory integrals using derivatives. Mathematics of Computation, 2006, 75, 1233-1259.
2.154Exact and discretized stability of the pantograph equation. Applied Numerical Mathematics, 1997, 24,2.147
295-308.3.842
Symmetric and arbitrarily high-order Birkhoffâ $€$ "Hermite time integrators and their long-time14 behaviour for solving nonlinear Kleinâ€"Gordon equations. Journal of Computational Physics, 2018,356, 1-30.
15 Effective Approximation for the Semiclassical SchrÃণdinger Equation. Foundations of Computational 2.5 40
Mathematics, 2014, 14, 689-720.2.337
on Numerical Analysis, 2005, 42, 2218-2256.
2.1 36Think globally, act locally: Solving highly-oscillatory ordinary differential equations. AppliedNumerical Mathematics, 2002, 43, 145-160.2.034
19 Order Stars and a Saturation Theorem for First-order Hyperbolics. IMA Journal of Numerical Analysis,
20 Stability and Asymptotic Stability of Functional-Differential Equations. Journal of the London Mathematical Society, 1995, 51, 559-572.
$21 \quad$ Biorthogonality and Its Applications to Numerical Analysis.. Mathematics of Computation, 1993, 60, 85.
22 Explicit adaptive symplectic integrators for solving Hamiltonian systems. Celestial Mechanics and Dynamical Astronomy, 2012, 114, 297-317.On the Generalized PadÃ@ Approximations to the Exponential Function. SIAM Journal on Numerical
Analysis, 1979, 16,631-636.
Analysis, 1979, 16, 631-636. $2.3 \quad 14$2.026 Runge-Kutta methods for quadratic ordinary differential equations. BIT Numerical Mathematics, 1998,38, 315-346.
14
On an Isospectral Lieâ€"Poisson System and Its Lie Algebra. Foundations of Computational Mathematics,
2006, 6, 121-144. 271.313
28 Complexity Theory for Lie-Group Solvers. Journal of Complexity, 2002, 18, 242-286.
13
On the Discretization of Double-Bracket Flows. Foundations of Computational Mathematics, 2002, 2,
29 305-329.2.213
30 A Class of Integrable Flows on the Space of Symmetric Matrices. Communications in MathematicalPhysics, 2009, 290, 399-435.
2.1 1231 Composite exponential approximations. Mathematics of Computation, 1982, 38, 99-1 12.Approximately preserving symmetries in the numerical integration of ordinary differential equations.Spectral theory of large Wienerâ€"Hopf operators with complex-symmetric kernels and rational
symbols. Mathematical Proceedings of the Cambridge Philosophical Society, 2011, 151, 161-191.Error analysis of the extended Filon-type method for highly oscillatory integrals. Research in

| $37 \quad$Rational Interpolation to \$exp $(-x) \$$ with Application to Certain Stiff Systems. SIAM Journal on
 Numerical Analysis, 1981, 18, 1-12. |
| :--- | :--- |
| $38 \quad$ Barriers to Stability. SIAM Journal on Numerical Analysis, 1983, 20, 1251-1257. |
| $39 \quad$COMMUTATORS OF SKEW-SYMMETRIC MATRICES. International Journal of Bifurcation and Chaos in
 Applied Sciences and Engineering, 2005, 15, 793-801. |
| 1.7 |

40 A proof of the first dahlquist barrier by order stars. BIT Numerical Mathematics, 1984, 24, 529-537.
$2.0 \quad 10$
Numerical Stability in the Presence of Variable Coefficients. Foundations of Computational
Mathematics, 2016, 16, 751-777.
$2.5 \quad 10$

Magnus--Lanczos Methods with Simplified Commutators for the SchrÃๆdinger Equation with a
Time-Dependent Potential. SIAM Journal on Numerical Analysis, 2018, 56, 1547-1569.
?-stability and dominating pairs. Mathematics of Computation, 1978, 32, 19-33.
2.1

A Family of Orthogonal Rational Functions and Other Orthogonal Systems with a skew-Hermitian
Differentiation Matrix. Journal of Fourier Analysis and Applications, 2020, 26, 1.

Composite Methods for Numerical Solution of Stiff Systems of ODEâ€ $€^{T M}$ s. SIAM Journal on Numerical
Analysis, 1984, 21, 340-351.

Global Bounds on Numerical Error for Ordinary Differential Equations. Journal of Complexity, 1993, 9, 97-112.

47 Compact schemes for laserâ€"matter interaction in SchrÃ千dinger equation based on effective splittings

Solving SchrÃๆdinger equation in semiclassical regime with highly oscillatory time-dependent potentials. Journal of Computational Physics, 2019, 376, 564-584.
3.8

8

Spectral computation of highly oscillatory integral equations in laser theory. Journal of
$49 \quad$ Spectral computation of highly oscillatory int
$3.8 \quad 7$

50 RUNGEâ€"KUTTA METHODS ON MANIFOLDS. , 1996, , 57-70.
7

On Rapid Computation of Expansions in Ultraspherical Polynomials. SIAM Journal on Numerical
Analysis, 2012, 50, 307-327.

Numerical solution of Sturmâe"Liouville problems via Fer streamers. Numerische Mathematik, 2015, 131, 541-565.

Functional fittingâ $\epsilon^{\text {" }}$ new family of schemes for integration of stiff O.D.E. Mathematics of Computation, 1977, 31, 112-123.
2.1

5

```
5 5 \text { On theA-Acceptability of PadÃ` Approximations. SIAM Journal on Mathematical Analysis, 1979, 10,}
1002-1007.
```

On the Dimension of Certain Graded Lie Algebras Arising in Geometric Integration of Differential

57 Semi-explicit methods for isospectral flows. Advances in Computational Mathematics, 2001, 14, 1-24. 4

58 The Joy and Pain of Skew Symmetry. Foundations of Computational Mathematics, 2016, 16, 1607-1630.
2.5

4

59 Fast Computation of Orthogonal Systems with a <scp>Skewâ€Symmetric</scp> Differentiation Matrix.
 Communications on Pure and Applied Mathematics, 2021, 74, 478-506.

$3.1 \quad 4$

60 Solving the wave equation with multifrequency oscillations. Journal of Computational Dynamics,
2019, 6, 239-249.
1.1

3

61 On Multivalued Exponential Approximations. SIAM Journal on Numerical Analysis, 1981, 18, 480-499
2.3

2

Rational Approximations to the Exponential Function with Two Complex Conjugate Interpolation
Points. SIAM Journal on Mathematical Analysis, 1985, 16, 814-821.
1.9

2

63 Asymptotic solvers for second-order differential equation systems with multiple frequencies.
Calcolo, 2014, 51, 109-139.
1.1

2

64 An Adaptive Filon Algorithm for Highly Oscillatory Integrals. , 2018, , 407-424.
A-acceptable exponentially fitted combinations of three PadÃ© approximations. Journal of
Computational and Applied Mathematics, 1978, 4, 143-146.

66 Explicit representations of biorthogonal polynomials. Numerical Algorithms, 1995, 10, 51-67.
1.9

1
67 On expansions in orthogonal polynomials. Advances in Computational Mathematics, 2013, 38, 35-61.

1.6

1

68 Efficient Two-Step Numerical Methods for Parabolic Differential Equations. North-Holland

