
Camille M Steber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/600941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	As the number falls, alternatives to the Hagberg–Perten falling number method: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2105-2117.	11.7	6
2	Application of the factor analytic model to assess wheat falling number performance and stability in multienvironment trials. Crop Science, 2021, 61, 372-382.	1.8	7
3	Seedling elongation responses to gibberellin seed treatments in wheat. , 2021, 4, e20144.		1
4	Leaf temperature impacts canopy water use efficiency independent of changes in leaf level water use efficiency. Journal of Plant Physiology, 2021, 258-259, 153357.	3.5	9
5	Investigating conditions that induce late maturity alpha-amylase (LMA) using Northwestern US spring wheat (<i>Triticum aestivum</i> L.). Seed Science Research, 2021, 31, 169-177.	1.7	13
6	The genetics of late maturity alpha-amylase (LMA) in North American spring wheat (<i>Triticum) Tj ETQq0 0 0 rgE</i>	BT 10verlo	ck 10 Tf 50 5

7	Registration of â€~Castella' soft white winter club wheat. Journal of Plant Registrations, 2021, 15, 504-514.	0.5	2
8	Characterization of root traits for improvement of spring wheat in the Pacific Northwest. Agronomy Journal, 2020, 112, 228-240.	1.8	9
9	Carbon isotope discrimination association with yield and test weight in Pacific Northwest–adapted spring and winterÂwheat. , 2020, 3, e20052.		2
10	Unraveling complex traits in wheat: Approaches for analyzing genotypeÂ×Âenvironment interactions in a multienvironment study of falling numbers. Crop Science, 2020, 60, 3013-3026.	1.8	19
11	CA signaling is essential for the embryo-to-seedling transition during Arabidopsis seed germination, a ghost story. Plant Signaling and Behavior, 2020, 15, 1705028.	2.4	25
12	Exome sequencing of bulked segregants identified a novel TaMKK3-A allele linked to the wheat ERA8 ABA-hypersensitive germination phenotype. Theoretical and Applied Genetics, 2020, 133, 719-736.	3.6	17
13	Isolation of Mutations Conferring Increased Glyphosate Resistance in Spring Wheat. Crop Science, 2018, 58, 84-97.	1.8	4
14	Falling number of soft white wheat by nearâ€infrared spectroscopy: A challenge revisited. Cereal Chemistry, 2018, 95, 469-477.	2.2	15
15	Registration of the Louise/Alpowa Wheat Recombinant Inbred Line Mapping Population. Journal of Plant Registrations, 2018, 12, 282-287.	0.5	2
16	Positive and negative regulation of seed germination by the Arabidopsis <scp>GA</scp> hormone receptors, <i><scp>GID</scp>1a</i> , <i> b</i> , and <i>c</i> . Plant Direct, 2018, 2, e00083.	1.9	20
17	Genome-Wide Association Mapping for Tolerance to Preharvest Sprouting and Low Falling Numbers in Wheat. Frontiers in Plant Science, 2018, 9, 141.	3.6	62
18	Avoiding problems in wheat with low Falling Numbers. Crops & Soils, 2017, 50, 22-25.	0.2	9

CAMILLE M STEBER

#	Article	IF	CITATIONS
19	Biology in the Dry Seed: Transcriptome Changes Associated with Dry Seed Dormancy and Dormancy Loss in the Arabidopsis GA-Insensitive sleepy1-2 Mutant. Frontiers in Plant Science, 2017, 8, 2158.	3.6	27
20	Transcriptional mechanisms associated with seed dormancy and dormancy loss in the gibberellin-insensitive sly1-2 mutant of Arabidopsis thaliana. PLoS ONE, 2017, 12, e0179143.	2.5	16
21	The wheat ABA hypersensitive ERA8 mutant is associated with increased preharvest sprouting tolerance and altered hormone accumulation. Euphytica, 2016, 212, 229-245.	1.2	20
22	Molecular and phylogenetic characterization of the homoeologous EPSP Synthase genes of allohexaploid wheat, Triticum aestivum (L.). BMC Genomics, 2015, 16, 844.	2.8	10
23	Loss ofArabidopsis thalianaSeed Dormancy is Associated with Increased Accumulation of the GID1 GA Hormone Receptors. Plant and Cell Physiology, 2015, 56, 1773-1785.	3.1	54
24	Grain dormancy loss is associated with changes in ABA and GA sensitivity and hormone accumulation in bread wheat, <i>Triticum aestivum</i> (L.). Seed Science Research, 2015, 25, 179-193.	1.7	57
25	Registration of Zak <i>ERA8</i> Soft White Spring Wheat Germplasm with Enhanced Response to ABA and Increased Seed Dormancy. Journal of Plant Registrations, 2014, 8, 217-220.	0.5	4
26	The roles of the GA receptors <i>GID1a</i> , <i>GID1b</i> , and <i>GID1c</i> in <i>sly1</i> -independent GA signaling. Plant Signaling and Behavior, 2014, 9, e28030.	2.4	47
27	Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar â€~Zak'. Theoretical and Applied Genetics, 2013, 126, 791-803.	3.6	31
28	Lifting DELLA Repression of Arabidopsis Seed Germination by Nonproteolytic Gibberellin Signaling. Plant Physiology, 2013, 162, 2125-2139.	4.8	78
29	Gibberellin Signaling: A Theme and Variations on DELLA Repression. Plant Physiology, 2012, 160, 83-92.	4.8	219
30	Wheat ABA-insensitive mutants result in reduced grain dormancy. Euphytica, 2012, 188, 35-49.	1.2	16
31	The Role of Two F-Box Proteins, SLEEPY1 and SNEEZY, in Arabidopsis Gibberellin Signaling Â. Plant Physiology, 2011, 155, 765-775.	4.8	134
32	Mutations in the F-box gene SNEEZY result in decreased Arabidopsis GA signaling. Plant Signaling and Behavior, 2011, 6, 831-833.	2.4	18
33	Concerted action of two avirulent spore effectors activates <i>Reaction to Puccinia graminis 1</i> () Tj ETQq1 Sciences of the United States of America, 2011, 108, 14676-14681.	1 0.78431 7.1	4 rgBT /Over 67
34	Isolation of ABA-responsive mutants in allohexaploid bread wheat (Triticum aestivum L.): Drawing connections to grain dormancy, preharvest sprouting, and drought tolerance. Plant Science, 2010, 179, 620-629.	3.6	26
35	Scarlet-Rz1, an EMS-generated hexaploid wheat with tolerance to the soilborne necrotrophic pathogens Rhizoctonia solani AG-8 and R. oryzae. Theoretical and Applied Genetics, 2009, 119, 293-303.	3.6	30
36	Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Reports, 2009, 28, 903-913.	5.6	94

CAMILLE M STEBER

#	Article	IF	CITATIONS
37	Proteolysis-Independent Downregulation of DELLA Repression in <i>Arabidopsis</i> by the Gibberellin Receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell, 2008, 20, 2447-2459.	6.6	144
38	Seed Germination of GA-Insensitive sleepy1 Mutants Does Not Require RGL2 Protein Disappearance in Arabidopsis. Plant Cell, 2007, 19, 791-804.	6.6	85
39	Gibberellin Metabolism and Signaling. Vitamins and Hormones, 2005, 72, 289-338.	1.7	83
40	Recessive-interfering mutations in the gibberellin signaling gene SLEEPY1 are rescued by overexpression of its homologue, SNEEZY. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12771-12776.	7.1	111
41	The Arabidopsis F-Box Protein SLEEPY1 Targets Gibberellin Signaling Repressors for Gibberellin-Induced Degradation[W]. Plant Cell, 2004, 16, 1392-1405.	6.6	523
42	Callus Induction and Plant Regeneration from Mature Embryos of a Diverse Set of Wheat Genotypes. Plant Cell, Tissue and Organ Culture, 2004, 76, 277-281.	2.3	59
43	Sivb 2003 Congress Symposium Proceeding: Mutation- and Transposon-Based Approaches for the Identification of Genes for Pre-Harvest Sprouting in Wheat. In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 256-259.	2.1	2
44	The Organization and Rate of Evolution of Wheat Genomes Are Correlated With Recombination Rates Along Chromosome Arms. Genome Research, 2003, 13, 753-763.	5.5	298
45	A role for the ubiquitin–26S-proteasome pathway in gibberellin signaling. Trends in Plant Science, 2003, 8, 492-497.	8.8	115
46	The ArabidopsisSLEEPY1Gene Encodes a Putative F-Box Subunit of an SCF E3 Ubiquitin Ligase[W]. Plant Cell, 2003, 15, 1120-1130.	6.6	505
47	Comparative DNA Sequence Analysis of Wheat and Rice Genomes. Genome Research, 2003, 13, 1818-1827.	5.5	369
48	Transposon-Related Sequences in the Triticeae. Cereal Research Communications, 2002, 30, 237-244.	1.6	2
49	A Role for Brassinosteroids in Germination in Arabidopsis. Plant Physiology, 2001, 125, 763-769.	4.8	386
50	Isolation of the GA-Response Mutant sly1 as a Suppressor of ABI1-1 in Arabidopsis thaliana. Genetics, 1998, 149, 509-521.	2.9	200
51	UME6 is a central component of a developmental regulatory switch controlling meiosis-specific gene expression Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 12490-12494.	7.1	77
52	UME6, a negative regulator of meiosis insaccharomyces cerevisiae, contains a C-terminal Zn2Cys6binuclear cluster that binds the URS1 DNA sequence in a zinc-dependent manner. Protein Science, 1995, 4, 1832-1843.	7.6	69
53	UME6 is a key regulator of nitrogen repression and meiotic development Genes and Development, 1994, 8, 796-810.	5.9	182

54 DE-repression of Seed Germination by GA Signaling. , 0, , 248-263.