Wolfgang P Meier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6009317/publications.pdf

Version: 2024-02-01

171 papers 11,575 citations

53 h-index 29157 104 g-index

175 all docs

175
docs citations

175 times ranked

9307 citing authors

#	Article	IF	CITATIONS
1	Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20719-20724.	7.1	645
2	Polymeric Vesicles: From Drug Carriers to Nanoreactors and Artificial Organelles. Accounts of Chemical Research, 2011, 44, 1039-1049.	15.6	570
3	Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes. Polymer, 2005, 46, 3540-3563.	3.8	488
4	Bioinspired polymer vesicles and membranes for biological and medical applications. Chemical Society Reviews, 2016, 45, 377-411.	38.1	485
5	Polymerized ABA Triblock Copolymer Vesicles. Langmuir, 2000, 16, 1035-1041.	3.5	440
6	Stimuliâ€Responsive Polymersomes as Nanocarriers for Drug and Gene Delivery. Macromolecular Bioscience, 2009, 9, 129-139.	4.1	418
7	Stimuli-Responsive Polymers and Their Applications in Nanomedicine. Biointerphases, 2012, 7, 9.	1.6	366
8	Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles. Chemical Communications, 2000, , 1433-1434.	4.1	284
9	Reconstitution of Channel Proteins in (Polymerized) ABA Triblock Copolymer Membranes. Angewandte Chemie - International Edition, 2000, 39, 4599-4602.	13.8	246
10	Virus-assisted loading of polymer nanocontainer. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5064-5068.	7.1	236
11	Toward Intelligent Nanosize Bioreactors:Â A pH-Switchable, Channel-Equipped, Functional Polymer Nanocontainer. Nano Letters, 2006, 6, 2349-2353.	9.1	231
12	Selective and Responsive Nanoreactors. Advanced Functional Materials, 2011, 21, 1241-1259.	14.9	209
13	Vesicle-Templated Polymer Hollow Spheres. Langmuir, 1998, 14, 1031-1036.	3.5	205
14	Cell targeting by a generic receptor-targeted polymer nanocontainer platform. Journal of Controlled Release, 2005, 102, 475-488.	9.9	196
15	Therapeutic Nanoreactors:  Combining Chemistry and Biology in a Novel Triblock Copolymer Drug Delivery System. Nano Letters, 2005, 5, 2220-2224.	9.1	196
16	Biocompatible Functionalization of Polymersome Surfaces: A New Approach to Surface Immobilization and Cell Targeting Using Polymersomes. Journal of the American Chemical Society, 2011, 133, 4476-4483.	13.7	176
17	Highly Permeable and Selective Poreâ€Spanning Biomimetic Membrane Embedded with Aquaporin Z. Small, 2012, 8, 1185-1190.	10.0	158
18	Protein–polymer nanoreactors for medical applications. Chemical Society Reviews, 2012, 41, 2800-2823.	38.1	158

#	Article	IF	Citations
19	Asymmetric ABC-Triblock Copolymer Membranes Induce a Directed Insertion of Membrane Proteins. Macromolecular Bioscience, 2004, 4, 930-935.	4.1	151
20	Giant Free-Standing ABA Triblock Copolymer Membranes. Langmuir, 2000, 16, 7708-7712.	3.5	142
21	Biomimetic membranes designed from amphiphilic block copolymers. Soft Matter, 2006, 2, 751.	2.7	138
22	Self-assembly of reactive amphiphilic block copolymers as mimetics for biological membranes. Current Opinion in Chemical Biology, 2004, 8, 598-603.	6.1	137
23	Cell-Specific Integration of Artificial Organelles Based on Functionalized Polymer Vesicles. Nano Letters, 2008, 8, 1368-1373.	9.1	133
24	Nanoreactors from Polymer-Stabilized Liposomes. Langmuir, 2001, 17, 919-923.	3.5	128
25	Photoresponsive polymersomes as smart, triggerable nanocarriers. Soft Matter, 2011, 7, 9167.	2.7	128
26	Ion-carrier controlled precipitation of calcium phosphate in giant ABA triblock copolymer vesicles. Chemical Communications, 2001, , 2452-2453.	4.1	126
27	Molecular Organization and Dynamics in Polymersome Membranes: A Lateral Diffusion Study. Macromolecules, 2014, 47, 7588-7596.	4.8	122
28	Enzymatic Cascade Reactions inside Polymeric Nanocontainers: A Means to Combat Oxidative Stress. Chemistry - A European Journal, 2011, 17, 4552-4560.	3.3	121
29	Mimicking the cell membrane with block copolymer membranes. Journal of Polymer Science Part A, 2012, 50, 2293-2318.	2.3	115
30	Photoreaction of a Hydroxyalkyphenone with the Membrane of Polymersomes: A Versatile Method To Generate Semipermeable Nanoreactors. Journal of the American Chemical Society, 2013, 135, 9204-9212.	13.7	113
31	Antioxidant Nanoreactor Based on Superoxide Dismutase Encapsulated in Superoxide-Permeable Vesicles. Journal of Physical Chemistry B, 2008, 112, 8211-8217.	2.6	110
32	Encapsulation of Fluorescent Molecules by Functionalized Polymeric Nanocontainers:Â Investigation by Confocal Fluorescence Imaging and Fluorescence Correlation Spectroscopy. Journal of the American Chemical Society, 2006, 128, 367-373.	13.7	108
33	High-Density Reconstitution of Functional Water Channels into Vesicular and Planar Block Copolymer Membranes. Journal of the American Chemical Society, 2012, 134, 18631-18637.	13.7	107
34	A nanocompartment system (Synthosome) designed for biotechnological applications. Journal of Biotechnology, 2006, 123, 50-59.	3.8	104
35	Polymer nanoreactors shown to produce and release antibiotics locally. Chemical Communications, 2013, 49, 128-130.	4.1	104
36	Synthesis of Photocleavable Amphiphilic Block Copolymers: Toward the Design of Photosensitive Nanocarriers. Macromolecular Chemistry and Physics, 2010, 211, 1847-1856.	2.2	103

#	Article	IF	Citations
37	Functionalization of Block Copolymer Vesicle Surfaces. Polymers, 2011, 3, 252-280.	4. 5	103
38	Dynamics of Membrane Proteins within Synthetic Polymer Membranes with Large Hydrophobic Mismatch. Nano Letters, 2015, 15, 3871-3878.	9.1	93
39	Immobilized Protein–Polymer Nanoreactors. Small, 2009, 5, 2545-2548.	10.0	89
40	Preparation and characterization of pore-suspending biomimetic membranes embedded with Aquaporin Z on carboxylated polyethylene glycol polymer cushion. Soft Matter, 2011, 7, 7274.	2.7	89
41	pH-Responsive PDMS- <i>b</i> -PDMAEMA Micelles for Intracellular Anticancer Drug Delivery. Biomacromolecules, 2014, 15, 3235-3245.	5.4	88
42	Responsive nanocapsules. Chemical Communications, 2001, , 55-56.	4.1	74
43	Substrate-permeable encapsulation of enzymes maintains effective activity, stabilizes against denaturation, and protects against proteolytic degradation. Biotechnology and Bioengineering, 2001, 75, 615-618.	3.3	71
44	Strainâ€Promoted Thiolâ€Mediated Cellular Uptake of Giant Substrates: Liposomes and Polymersomes. Angewandte Chemie - International Edition, 2017, 56, 2947-2950.	13.8	69
45	Amphiphilic Peptide Self-Assembly: Expansion to Hybrid Materials. Biomacromolecules, 2017, 18, 3471-3480.	5.4	68
46	SOD Antioxidant Nanoreactors: Influence of Block Copolymer Composition on the Nanoreactor Efficiency. Macromolecular Bioscience, 2010, 10, 531-538.	4.1	67
47	Can polymeric vesicles that confine enzymatic reactions act as simplified organelles?. FEBS Letters, 2011, 585, 1699-1706.	2.8	66
48	Amphiphilic Copolymer Membranes Promote NADH:Ubiquinone Oxidoreductase Activity: Towards an Electronâ€Transfer Nanodevice. Macromolecular Chemistry and Physics, 2010, 211, 229-238.	2.2	63
49	Solution Behavior of Double-Hydrophilic Block Copolymers in Dilute Aqueous Solution. Macromolecules, 2012, 45, 4772-4777.	4.8	62
50	Hybrid Polymer–Lipid Films as Platforms for Directed Membrane Protein Insertion. Langmuir, 2015, 31, 4868-4877.	3 . 5	62
51	Biomimetic supported membranes from amphiphilic block copolymers. Soft Matter, 2010, 6, 179-186.	2.7	61
52	Nanomimics of Host Cell Membranes Block Invasion and Expose Invasive Malaria Parasites. ACS Nano, 2014, 8, 12560-12571.	14.6	60
53	Mimicking Cellular Signaling Pathways within Synthetic Multicompartment Vesicles with Triggered Enzyme Activity and Induced Ion Channel Recruitment. Advanced Functional Materials, 2019, 29, 1904267.	14.9	58
54	Multicompartment Polymer Vesicles with Artificial Organelles for Signalâ€Triggered Cascade Reactions Including Cytoskeleton Formation. Advanced Functional Materials, 2020, 30, 2002949.	14.9	57

#	Article	IF	CITATIONS
55	Phase Behavior of Mixed Langmuir Monolayers from Amphiphilic Block Copolymers and an Antimicrobial Peptide. Langmuir, 2006, 22, 1164-1172.	3.5	55
56	Biomimetic Strategy To Reversibly Trigger Functionality of Catalytic Nanocompartments by the Insertion of pH-Responsive Biovalves. Nano Letters, 2017, 17, 5790-5798.	9.1	54
57	Solid-Supported Block Copolymer Membranes through Interfacial Adsorption of Charged Block Copolymer Vesicles. Langmuir, 2008, 24, 6254-6261.	3.5	50
58	$Poly(\langle i \rangle N \langle i \rangle - viny pyrrolidone)$ - $Poly(dimethylsiloxane)$ -Based Polymersome Nanoreactors for Laccase-Catalyzed Biotransformations. Biomacromolecules, 2014, 15, 1469-1475.	5.4	50
59	Polymer nanocompartments in broad-spectrum medical applications. Nanomedicine, 2013, 8, 425-447.	3.3	49
60	Natural channel protein inserts and functions in a completely artificial, solid-supported bilayer membrane. Scientific Reports, 2013, 3, 2196.	3.3	46
61	Probing Bioinspired Transport of Nanoparticles into Polymersomes. Angewandte Chemie - International Edition, 2012, 51, 4613-4617.	13.8	45
62	Investigation of Horseradish Peroxidase Kinetics in an "Organelle-Like―Environment. Small, 2017, 13, 1603943.	10.0	45
63	Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Frontiers in Chemistry, 2018, 6, 645.	3.6	45
64	Planar Block Copolymer Membranes by Vesicle Spreading. Macromolecular Bioscience, 2011, 11, 514-525.	4.1	40
65	Effect of Molecular Parameters on the Architecture and Membrane Properties of 3D Assemblies of Amphiphilic Copolymers. Macromolecules, 2014, 47, 5060-5069.	4.8	40
66	Functional surface engineering by nucleotide-modulated potassium channel insertion into polymer membranes attached to solid supports. Biomaterials, 2014, 35, 7286-7294.	11.4	40
67	DNA-Mediated Self-Organization of Polymeric Nanocompartments Leads to Interconnected Artificial Organelles. Nano Letters, 2016, 16, 7128-7136.	9.1	39
68	PEO- <i>b</i> -PCL- <i>b</i> -PMOXA Triblock Copolymers: From Synthesis to Microscale Polymersomes with Asymmetric Membrane. Macromolecules, 2017, 50, 1512-1520.	4.8	39
69	Monolayer Interactions between Lipids and Amphiphilic Block Copolymers. Langmuir, 2009, 25, 9847-9856.	3.5	38
70	Planar Biomimetic Membranes Based on Amphiphilic Block Copolymers. ACS Macro Letters, 2014, 3, 59-63.	4.8	38
71	Stimuli-Responsive Codelivery of Oligonucleotides and Drugs by Self-Assembled Peptide Nanoparticles. Biomacromolecules, 2016, 17, 935-945.	5.4	38
72	Optimized reconstitution of membrane proteins into synthetic membranes. Communications Chemistry, 2018, 1 , .	4.5	38

#	Article	IF	Citations
73	Polymer membranes as templates for bio-applications ranging from artificial cells to active surfaces. European Polymer Journal, 2019, 112, 346-364.	5.4	38
74	Synthesis and complex self-assembly of amphiphilic block copolymers with a branched hydrophobic poly(2-oxazoline) into multicompartment micelles, pseudo-vesicles and yolk/shell nanoparticles. Polymer Chemistry, 2020, 11, 1237-1248.	3.9	38
75	Observing Proteins as Single Molecules Encapsulated in Surfaceâ€Tethered Polymeric Nanocontainers. ChemBioChem, 2009, 10, 702-709.	2.6	37
76	Water-in-water mesophases for templating inorganics. Chemical Communications, 2004, , 2170.	4.1	36
77	Amphiphilic Diblock Copolymers for Molecular Recognition: Metalâ^'Nitrilotriacetic Acid Functionalized Vesicles. Langmuir, 2009, 25, 1122-1130.	3.5	36
78	Active surfaces engineered by immobilizing protein-polymer nanoreactors for selectively detecting sugar alcohols. Biomaterials, 2016, 89, 79-88.	11.4	36
79	Gas-tight triblock-copolymer membranes are converted to CO2 permeable by insertion of plant aquaporins. Scientific Reports, 2012, 2, 538.	3.3	35
80	Solidâ€supported amphiphilic triblock copolymer membranes grafted from gold surface. Journal of Polymer Science Part A, 2009, 47, 1-13.	2.3	34
81	Combinatorial Strategy for Studying Biochemical Pathways in Double Emulsion Templated Cellâ€Sized Compartments. Advanced Materials, 2020, 32, e2004804.	21.0	34
82	An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery. Nanoscale, 2016, 8, 14858-14869.	5.6	33
83	Live Follow-Up of Enzymatic Reactions Inside the Cavities of Synthetic Giant Unilamellar Vesicles Equipped with Membrane Proteins Mimicking Cell Architecture. ACS Synthetic Biology, 2018, 7, 2116-2125.	3.8	32
84	Nanosensors based on polymer vesicles and planar membranes: a short review. Journal of Nanobiotechnology, 2018, 16, 63.	9.1	32
85	How Do the Properties of Amphiphilic Polymer Membranes Influence the Functional Insertion of Peptide Pores?. Biomacromolecules, 2020, 21, 701-715.	5.4	32
86	Synthesis of Linear <scp>ABC</scp> Triblock Copolymers and Their Selfâ€Assembly in Solution. Helvetica Chimica Acta, 2018, 101, e1700287.	1.6	31
87	A general strategy for creating self-defending surfaces for controlled drug production for long periods of time. Journal of Materials Chemistry B, 2014, 2, 4684.	5. 8	30
88	Directed Insertion of Light-Activated Proteorhodopsin into Asymmetric Polymersomes from an ABC Block Copolymer. Nano Letters, 2019, 19, 2503-2508.	9.1	30
89	Fluorescenceâ€Based Assay for the Optimization of the Activity of Artificial Transfer Hydrogenase within a Biocompatible Compartment. ChemCatChem, 2013, 5, 720-723.	3.7	29
90	"Active Surfaces―Formed by Immobilization of Enzymes on Solid-Supported Polymer Membranes. Langmuir, 2014, 30, 11660-11669.	3 . 5	29

#	Article	IF	Citations
91	Biocompatible Polymer–Peptide Hybrid-Based DNA Nanoparticles for Gene Delivery. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10446-10456.	8.0	29
92	Functionalization of Gold and Silicon Surfaces by Copolymer Brushes Using Surface-Initiated ATRP. Macromolecular Chemistry and Physics, 2007, 208, 1283-1293.	2.2	28
93	Protein decorated membranes by specific molecular interactions. Soft Matter, 2010, 6, 2815.	2.7	28
94	Solid-supported polymeric membranes. Soft Matter, 2011, 7, 2202-2210.	2.7	26
95	Membrane protein distribution in composite polymer–lipid thin films. Chemical Communications, 2012, 48, 8811.	4.1	26
96	Bioinspired Molecular Factories with Architecture and In Vivo Functionalities as Cell Mimics. Advanced Science, 2020, 7, 1901923.	11.2	26
97	Updating radical ring-opening polymerisation of cyclic ketene acetals from synthesis to degradation. European Polymer Journal, 2020, 134, 109851.	5.4	25
98	Porphyrin-polymer nanocompartments: singlet oxygen generation and antimicrobial activity. Journal of Biological Inorganic Chemistry, 2018, 23, 109-122.	2.6	24
99	Reversible peptide particle formation using a mini amino acid sequence. Soft Matter, 2010, 6, 5596.	2.7	22
100	Revisiting monomer synthesis and radical ring opening polymerization of dimethylated MDO towards biodegradable nanoparticles for enzymes. European Polymer Journal, 2018, 101, 113-119.	5.4	22
101	Novel monomers in radical ring-opening polymerisation for biodegradable and pH responsive nanoparticles. Polymer Chemistry, 2019, 10, 5285-5288.	3.9	22
102	Biomimetic Block Copolymer Membranes. Chimia, 2008, 62, 820.	0.6	21
103	Engineering a Chemical Switch into the Lightâ€driven Proton Pump Proteorhodopsin by Cysteine Mutagenesis and Thiol Modification. Angewandte Chemie - International Edition, 2016, 55, 8846-8849.	13.8	21
104	Strainâ€Promoted Thiolâ€Mediated Cellular Uptake of Giant Substrates: Liposomes and Polymersomes. Angewandte Chemie, 2017, 129, 2993-2996.	2.0	21
105	Amphiphilic PEG <i>â€bâ€</i> PMCL <i>â€bâ€</i> PDMAEMA Triblock Copolymers: From Synthesis to Physicoâ€Chemistry of Selfâ€Assembled Structures. Macromolecular Chemistry and Physics, 2011, 212, 937-949.	2.2	20
106	Recent Advances in Hybrid Biomimetic Polymer-Based Films: from Assembly to Applications. Polymers, 2020, 12, 1003.	4.5	20
107	Decorating Nanostructured Surfaces with Antimicrobial Peptides to Efficiently Fight Bacteria. ACS Applied Bio Materials, 2020, 3, 1533-1543.	4.6	20
108	Stabilizing Enzymes within Polymersomes by Coencapsulation of Trehalose. Biomacromolecules, 2021, 22, 134-145.	5.4	20

#	Article	IF	Citations
109	Specific His ₆ -tag Attachment to Metal-Functionalized Polymersomes Relies on Molecular Recognition. Journal of Physical Chemistry B, 2012, 116, 10113-10124.	2.6	19
110	Engineered non-toxic cationic nanocarriers with photo-triggered slow-release properties. Polymer Chemistry, 2016, 7, 3451-3464.	3.9	19
111	Key aspects to yield low dispersity of PEO-b-PCL diblock copolymers and their mesoscale self-assembly. European Polymer Journal, 2016, 83, 300-310.	5.4	19
112	Selfâ€Assembled Polymeric Membranes and Nanoassemblies on Surfaces: Preparation, Characterization, and Current Applications. Macromolecular Bioscience, 2020, 20, e1900257.	4.1	19
113	Phase Behavior of Vesicleâ€Forming Block Copolymers in Aqueous Solutions. Macromolecular Chemistry and Physics, 2011, 212, 1245-1254.	2.2	18
114	Reduction-Sensitive Amphiphilic Triblock Copolymers Self-Assemble Into Stimuli-Responsive Micelles for Drug Delivery. Macromolecular Bioscience, 2015, 15, 481-489.	4.1	18
115	Interactions of Biodegradable Poly([R]-3-hydroxy-10-undecenoate) with 1,2-Dioleoyl- <i>sn</i> -glycero-3-phosphocholine Lipid: A Monolayer Study. Langmuir, 2011, 27, 10878-10885.	3.5	17
116	Cosolvent fractionation of PMOXA-b-PDMS-b-PMOXA: Bulk separation of triblocks from multiblocks. European Polymer Journal, 2017, 88, 575-585.	5.4	17
117	Surfaces with Dual Functionality through Specific Coimmobilization of Self-Assembled Polymeric Nanostructures. Langmuir, 2019, 35, 4557-4565.	3.5	15
118	One-Pot Synthesis of an Amphiphilic ABC Triblock Copolymer PEO- <i>b</i> -PEHOx- <i>b</i> -PEtOz and Its Self-Assembly into Nanoscopic Asymmetric Polymersomes. Macromolecules, 2020, 53, 11040-11050.	4.8	15
119	Solid Peptide Nanoparticles – Structural Characterization and Quantification of Cargo Encapsulation. Macromolecular Bioscience, 2010, 10, 1406-1415.	4.1	14
120	Complex Self-Assembly Behavior of Bis-hydrophilic PEO- <i>b</i> -PCL- <i>b</i> -PMOXA Triblock Copolymers in Aqueous Solution. Macromolecules, 2017, 50, 7155-7168.	4.8	14
121	Polymer–Lipid Hybrid Membranes as a Model Platform to Drive Membrane–Cytochrome <i>c</i> Interaction and Peroxidase-like Activity. Journal of Physical Chemistry B, 2020, 124, 4454-4465.	2.6	14
122	Asymmetric Membranes from Amphiphilic ABC Triblock Copolymers. Molecular Crystals and Liquid Crystals, 2004, 417, 185-191.	0.9	13
123	Analysis of Molecular Parameters Determining the Antimalarial Activity of Polymerâ€Based Nanomimics. Macromolecular Rapid Communications, 2015, 36, 1923-1928.	3.9	13
124	Biomimetic Planar Polymer Membranes Decorated with Enzymes as Functional Surfaces. Langmuir, 2018, 34, 9015-9024.	3.5	13
125	Hierarchical Organization of Purely Peptidic Amphiphiles into Peptide Beads. Journal of Physical Chemistry C, 2011, 115, 14583-14590.	3.1	12
126	Exploiting Dimerization of Purely Peptidic Amphiphiles to Form Vesicles. Small, 2011, 7, 2158-2162.	10.0	12

#	Article	IF	CITATIONS
127	Expanding the potential of MRI contrast agents through multifunctional polymeric nanocarriers. Nanomedicine, 2017, 12, 811-817.	3.3	12
128	pH-Triggered Membrane in Pervaporation Process. ACS Omega, 2018, 3, 18950-18957.	3.5	12
129	From Fibers to Micelles Using Point-Mutated Amphiphilic Peptides. Langmuir, 2011, 27, 4578-4584.	3.5	11
130	Engineering and Assembly of Protein Modules into Functional Molecular Systems. Chimia, 2016, 70, 398.	0.6	10
131	Block Lengthâ€Dependent Protein Fouling on Poly(2â€oxazoline)â€Based Polymersomes: Influence on Macrophage Association and Circulation Behavior. Small, 2022, 18, .	10.0	10
132	Nanoparticle-based highly sensitive MRI contrast agents with enhanced relaxivity in reductive milieu. Chemical Communications, 2016, 52, 9937-9940.	4.1	9
133	Giant Host Red Blood Cell Membrane Mimicking Polymersomes Bind Parasite Proteins and Malaria Parasites. Chimia, 2016, 70, 288.	0.6	9
134	Nanostructured Surfaces through Immobilization of Selfâ€Assembled Polymer Architectures Using Thiol–Ene Chemistry. Macromolecular Materials and Engineering, 2017, 302, 1600363.	3.6	9
135	Probing membrane asymmetry of ABC polymersomes. Chemical Communications, 2019, 55, 1148-1151.	4.1	9
136	Inverting glucuronidation of hymecromone <i>in situ</i> by catalytic nanocompartments. Journal of Materials Chemistry B, 2022, 10, 3916-3926.	5.8	9
137	Self-assembled peptide beads used as a template for ordered gold nanoparticle superstructures. Colloids and Surfaces B: Biointerfaces, 2013, 112, 542-547.	5.0	8
138	Self-assembled Structures from Amphiphilic Peptides. Chimia, 2013, 67, 881-884.	0.6	8
139	Asymmetric Triblock Copolymer Nanocarriers for Controlled Localization and pH-Sensitive Release of Proteins. Langmuir, 2016, 32, 10235-10243.	3.5	8
140	Artificial Organelles: Reactions inside Protein–Polymer Supramolecular Assemblies. Chimia, 2016, 70, 424.	0.6	8
141	Vesicles in Multiple Shapes: Fine-Tuning Polymersomes' Shape and Stability by Setting Membrane Hydrophobicity. Polymers, 2017, 9, 483.	4.5	8
142	Expanding the Potential of the Solvent-Assisted Method to Create Bio-Interfaces from Amphiphilic Block Copolymers. Biomacromolecules, 2021, 22, 3005-3016.	5.4	8
143	Synthesis and Characterization of New Polymer Nanocontainers. Macromolecular Symposia, 2005, 222, 157-162.	0.7	7
144	Poly(ethylene oxide)–poly(ethylene imine) block copolymers as templates and catalysts for the in situ formation of monodisperse silica nanospheres. Colloid and Polymer Science, 2010, 288, 1645-1650.	2.1	7

#	Article	IF	Citations
145	Challenges in Malaria Management and a Glimpse at Some Nanotechnological Approaches. Advances in Experimental Medicine and Biology, 2018, 1052, 103-112.	1.6	7
146	Deepening the insight into poly(butylene oxide)- <i>block</i> -poly(glycidol) synthesis and self-assemblies: micelles, worms and vesicles. RSC Advances, 2020, 10, 22701-22711.	3.6	7
147	From spherical compartments to polymer films: exploiting vesicle fusion to generate solid supported thin polymer membranes. Nanoscale, 2021, 13, 6944-6952.	5.6	7
148	Tailoring a Solvent-Assisted Method for Solid-Supported Hybrid Lipid–Polymer Membranes. Langmuir, 2022, 38, 6561-6570.	3.5	7
149	Highly Permeable and Selective Poreâ€Spanning Biomimetic Membrane Embedded with Aquaporin Z. Small, 2012, 8, 1969-1969.	10.0	6
150	Multicompartment micelleâ€structured peptide nanoparticles: A new biocompatible gene―and drugâ€delivery tool. Journal of Biomedical Materials Research - Part A, 2014, 102, 1155-1163.	4.0	6
151	Giant Polymer Compartments for Confined Reactions. Chemistry, 2020, 2, 470-489.	2.2	6
152	PEG Brushes on Porous, PDMS-Coated Surfaces and Their Interaction with Carbon Dioxide. Macromolecular Chemistry and Physics, 2016, 217, 966-973.	2.2	5
153	Porphyrin Containing Polymersomes with Enhanced ROS Generation Efficiency: In Vitro Evaluation. Macromolecular Bioscience, 2020, 20, e1900291.	4.1	5
154	Fully amorphous atactic and isotactic block copolymers and their self-assembly into nano- and microscopic vesicles. Polymer Chemistry, 2021, 12, 5377-5389.	3.9	5
155	Metal cation responsive anionic microgels: behaviour towards biologically relevant divalent and trivalent ions. Soft Matter, 2021, 17, 715-723.	2.7	5
156	Multicomponent Copolymer Planar Membranes with Nanoscale Domain Separation. Nano Letters, 2022, 22, 5077-5085.	9.1	5
157	Efficient Two-Step Synthesis of 11,11′-Dithiobis[1-(2-bromo-2-methylpropionyloxy)undecane], a Conventional Initiator for Grafting Polymer Brushes from Gold Surfaces via ATRP. Synthetic Communications, 2010, 40, 3000-3007.	2.1	4
158	Self-Assembly of PEO-b-PCL-b-PMOXA Binary Mixtures. Macromolecules, 2018, 51, 9097-9109.	4.8	4
159	Block Copolymer Vesicles. , 0, , 39-71.		3
160	Triggering Mesophase Order in Melts of Metastable, Ultrathin Diblock Copolymer Films through Microstretching: Effect of Melt Film Thickness. Macromolecules, 2009, 42, 9332-9337.	4.8	3
161	pH-Triggered Reversible Multiple Protein–Polymer Conjugation Based on Molecular Recognition. Journal of Physical Chemistry B, 2015, 119, 12066-12073.	2.6	3
162	Engineering a Chemical Switch into the Lightâ€driven Proton Pump Proteorhodopsin by Cysteine Mutagenesis and Thiol Modification. Angewandte Chemie, 2016, 128, 8992-8995.	2.0	3

#	Article	IF	Citations
163	Effect of Divalent Cation on Swelling Behavior of Anionic Microgels: Quantification and Dynamics of Ion Uptake and Release. Langmuir, 2019, 35, 13413-13420.	3.5	3
164	Synthesis and characterization of tailorâ€made <i>N</i> àâ€vinylpyrrolidone copolymers and their blend membranes with polyvinyl alcohol for bioethanol dehydration by pervaporation. Journal of Applied Polymer Science, 2022, 139, 51562.	2.6	3
165	Head Group Influence on Lipid Interactions With a Polyhydroxyalkanoate Biopolymer. Macromolecular Chemistry and Physics, 2012, 213, 1922-1932.	2.2	2
166	Colloidal Nanoreactors and Nanocontainers. , 0, , 150-174.		1
167	Polymer Nanocontainers. , 2005, , 168-184.		1
168	Protein–Polymer Supramolecular Assemblies: A Key Combination for Multifunctionality. Chimia, 2013, 67, 791-795.	0.6	1
169	'Active Surfaces' as Possible Functional Systems in Detection and Chemical (Bio) Reactivity. Chimia, 2016, 70, 402.	0.6	1
170	Interfacing Functional Systems. Chimia, 2016, 70, 418.	0.6	1
171	Biomimetic Polymer Architectures. Chimia, 2018, 72, 548-548.	0.6	O