
Dominick Spracklen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6009136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The impact of semiâ€natural broadleaf woodland and pasture on soil properties and flood discharge. Hydrological Processes, 2022, 36, e14453.	1.1	12
2	Contrasting impacts of forests on cloud cover based on satellite observations. Nature Communications, 2022, 13, 670.	5.8	42
3	Doubling of annual forest carbon loss over the tropics during the early twenty-first century. Nature Sustainability, 2022, 5, 444-451.	11.5	47
4	The contribution of emission sources to the future air pollution disease burden in China. Environmental Research Letters, 2022, 17, 064027.	2.2	5
5	Emission Sector Impacts on Air Quality and Public Health in China From 2010 to 2020. GeoHealth, 2022, 6, .	1.9	5
6	Sensitivity of Air Pollution Exposure and Disease Burden to Emission Changes in China Using Machine Learning Emulation. GeoHealth, 2022, 6, .	1.9	13
7	The carbon sequestration potential of Scottish native woodland. Environmental Research Communications, 2021, 3, 041003.	0.9	4
8	An Assessment of Land–Atmosphere Interactions over South America Using Satellites, Reanalysis, and Two Global Climate Models. Journal of Hydrometeorology, 2021, 22, 905-922.	0.7	33
9	Regional Policies Targeting Residential Solid Fuel and Agricultural Emissions Can Improve Air Quality and Public Health in the Greater Bay Area and Across China. GeoHealth, 2021, 5, e2020GH000341.	1.9	9
10	Evapotranspiration in the Amazon: spatial patterns, seasonality, and recent trends in observations, reanalysis, and climate models. Hydrology and Earth System Sciences, 2021, 25, 2279-2300.	1.9	32
11	Statistical Emulation of Winter Ambient Fine Particulate Matter Concentrations From Emission Changes in China. GeoHealth, 2021, 5, e2021GH000391.	1.9	12
12	Robust Amazon precipitation projections in climate models that capture realistic land–atmosphere interactions. Environmental Research Letters, 2021, 16, 074002.	2.2	21
13	Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia. Nature Sustainability, 2021, 4, 892-899.	11.5	56
14	Large Air Quality and Public Health Impacts due to Amazonian Deforestation Fires in 2019. GeoHealth, 2021, 5, e2021GH000429.	1.9	16
15	Air Pollution From Forest and Vegetation Fires in Southeast Asia Disproportionately Impacts the Poor. GeoHealth, 2021, 5, e2021GH000418.	1.9	31
16	Impact of the 2019/2020 Australian Megafires on Air Quality and Health. GeoHealth, 2021, 5, e2021GH000454.	1.9	16
17	Assessing costs of Indonesian fires and the benefits of restoring peatland. Nature Communications, 2021, 12, 7044.	5.8	26
18	Pollutant Emissions from Improved Cookstoves of the Type Used in Sub-Saharan Africa. Combustion Science and Technology, 2020, 192, 1582-1602.	1.2	22

2

DOMINICK SPRACKLEN

#	Article	IF	CITATIONS
19	The influence of energy policy on charcoal consumption in urban households in Tanzania. Energy for Sustainable Development, 2020, 57, 200-213.	2.0	32
20	The potential for REDD+ to reduce forest degradation in Vietnam. Environmental Research Letters, 2020, 15, 074025.	2.2	7
21	Air quality and health impacts of vegetation and peat fires in Equatorial Asia during 2004–2015. Environmental Research Letters, 2020, 15, 094054.	2.2	30
22	Forest and Land Fires Are Mainly Associated with Deforestation in Riau Province, Indonesia. Remote Sensing, 2020, 12, 3.	1.8	32
23	A complete transition to clean household energy can save one–quarter of the healthy life lost to particulate matter pollution exposure in India. Environmental Research Letters, 2020, 15, 094096.	2.2	15
24	The impact of COVID-19 control measures on air quality in China. Environmental Research Letters, 2020, 15, 084021.	2.2	69
25	Large air quality and human health impacts due to Amazon forest and vegetation fires. Environmental Research Communications, 2020, 2, 095001.	0.9	31
26	Pollutant emission reductions deliver decreased PM _{2.5} -caused mortality across China during 2015–2017. Atmospheric Chemistry and Physics, 2020, 20, 11683-11695.	1.9	19
27	Seasonal and Inter-annual Variation of Evapotranspiration in Amazonia Based on Precipitation, River Discharge and Gravity Anomaly Data. Frontiers in Earth Science, 2019, 7, .	0.8	8
28	Biomass burning aerosol over the Amazon: analysis of aircraft, surface and satellite observations using a global aerosol model. Atmospheric Chemistry and Physics, 2019, 19, 9125-9152.	1.9	60
29	Relationship Between Fire and Forest Cover Loss in Riau Province, Indonesia Between 2001 and 2012. Forests, 2019, 10, 889.	0.9	21
30	Exploring the impacts of anthropogenic emission sectors on PM _{2.5} and human health in South and East Asia. Atmospheric Chemistry and Physics, 2019, 19, 11887-11910.	1.9	55
31	New estimate of particulate emissions from Indonesian peat fires in 2015. Atmospheric Chemistry and Physics, 2019, 19, 11105-11121.	1.9	63
32	Climate Benefits of Intact Amazon Forests and the Biophysical Consequences of Disturbance. Frontiers in Forests and Global Change, 2019, 2, .	1.0	54
33	Have Synergies Between Nitrogen Deposition and Atmospheric CO ₂ Driven the Recent Enhancement of the Terrestrial Carbon Sink?. Global Biogeochemical Cycles, 2019, 33, 163-180.	1.9	37
34	The Impact of Changes in Cloud Water pH on Aerosol Radiative Forcing. Geophysical Research Letters, 2019, 46, 4039-4048.	1.5	31
35	Non-deforestation drivers of fires are increasingly important sources of aerosol and carbon dioxide emissions across Amazonia. Scientific Reports, 2019, 9, 16975.	1.6	35
36	Residential energy use emissions dominate health impacts from exposure to ambient particulate matter in India. Nature Communications, 2018, 9, 617.	5.8	149

DOMINICK SPRACKLEN

#	Article	IF	CITATIONS
37	Impact on short-lived climate forcers increases projected warming due to deforestation. Nature Communications, 2018, 9, 157.	5.8	86
38	Substantial large-scale feedbacks between natural aerosols and climate. Nature Geoscience, 2018, 11, 44-48.	5.4	50
39	Current and Future Disease Burden From Ambient Ozone Exposure in India. GeoHealth, 2018, 2, 334-355.	1.9	17
40	Substantial changes in air pollution across China during 2015–2017. Environmental Research Letters, 2018, 13, 114012.	2.2	158
41	Stringent Emission Control Policies Can Provide Large Improvements in Air Quality and Public Health in India. GeoHealth, 2018, 2, 196-211.	1.9	27
42	Mixing State of Carbonaceous Aerosols of Primary Emissions from "Improved―African Cookstoves. Environmental Science & Technology, 2018, 52, 10134-10143.	4.6	18
43	Black-carbon absorption enhancement in the atmosphere determined by particle mixingÂstate. Nature Geoscience, 2017, 10, 184-188.	5.4	303
44	Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 2017, 43, 51-61.	3.6	660
45	Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century. Geophysical Research Letters, 2016, 43, 8060-8067.	1.5	20
46	Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Scientific Reports, 2016, 6, 37074.	1.6	151
47	Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations. Atmospheric Chemistry and Physics, 2016, 16, 11083-11106.	1.9	104
48	The impact of residential combustion emissions on atmospheric aerosol, human health, and climate. Atmospheric Chemistry and Physics, 2016, 16, 873-905.	1.9	122
49	The impact of Amazonian deforestation on Amazon basin rainfall. Geophysical Research Letters, 2015, 42, 9546-9552.	1.5	174
50	Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts. Atmospheric Chemistry and Physics, 2015, 15, 12251-12266.	1.9	46
51	Land Use Change Impacts on Air Quality and Climate. Chemical Reviews, 2015, 115, 4476-4496.	23.0	103
52	Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Nature Geoscience, 2015, 8, 768-771.	5.4	180
53	A Global Analysis of Deforestation in Moist Tropical Forest Protected Areas. PLoS ONE, 2015, 10, e0143886.	1.1	91
54	Tropical montane forests are a larger than expected global carbon store. Biogeosciences, 2014, 11, 2741-2754.	1.3	103

DOMINICK SPRACKLEN

#	Article	IF	CITATIONS
55	Contribution of vegetation and peat fires to particulate air pollution in Southeast Asia. Environmental Research Letters, 2014, 9, 094006.	2.2	101
56	The direct and indirect radiative effects of biogenic secondary organic aerosol. Atmospheric Chemistry and Physics, 2014, 14, 447-470.	1.9	175
57	Regeneration of native broadleaved species on clearfelled conifer plantations in upland Britain. Forest Ecology and Management, 2013, 310, 204-212.	1.4	18
58	Natural aerosol direct and indirect radiative effects. Geophysical Research Letters, 2013, 40, 3297-3301.	1.5	150
59	Natural aerosol–climate feedbacks suppressed by anthropogenic aerosol. Geophysical Research Letters, 2013, 40, 5316-5319.	1.5	32
60	Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model. Atmospheric Chemistry and Physics, 2012, 12, 4449-4476.	1.9	101
61	Observations of increased tropical rainfall preceded by air passage over forests. Nature, 2012, 489, 282-285.	13.7	483
62	Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmospheric Chemistry and Physics, 2011, 11, 12109-12136.	1.9	421
63	A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry and Physics, 2010, 10, 1701-1737.	1.9	542
64	Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model. Geoscientific Model Development, 2010, 3, 519-551.	1.3	406
65	Evidence for the role of organics in aerosol particle formation under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6646-6651.	3.3	403
66	Impact of BrO on dimethylsulfide in the remote marine boundary layer. Geophysical Research Letters, 2010, 37, .	1.5	75
67	Sources and properties of Amazonian aerosol particles. Reviews of Geophysics, 2010, 48, .	9.0	283
68	Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States. Journal of Geophysical Research, 2009, 114, .	3.3	356
69	Boreal forests, aerosols and the impacts on clouds and climate. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 4613-4626.	1.6	197
70	Regional and global trends in sulfate aerosol since the 1980s. Geophysical Research Letters, 2007, 34, .	1.5	81
71	Wildfires drive interannual variability of organic carbon aerosol in the western U.S. in summer. Geophysical Research Letters, 2007, 34, .	1.5	116
72	A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties. Atmospheric Chemistry and Physics, 2005, 5, 2227-2252.	1.9	257

#	Article	IF	CITATIONS
73	A perspective for advancing climate prediction services in Brazil. Climate Resilience and Sustainability, 0, , .	0.9	2